

Разделение наночастиц в градиенте плотности с использованием центрифуги Avanti JXN и бакетного ротора JS-24.15

Asmita Patel¹, Josh Robinson¹

¹Beckman Coulter, Inc., Индианаполис, штат Индиана, 46268

Аннотация

В последнее десятилетие использование наночастиц золота в области биомедицинских наук становится все более популярным, особенно при визуализации опухолей,¹ фототепловой терапии^{2,3} и металл- усиленной флуоресценции. Для таких задач необходимы высококачественные золотые наночастицы с монодисперсными размерами и соотношениями сторон. В настоящих уаказаниях по применению приведен удобная методика выделения наночастиц золота из полидисперсного образца в градиенте плотности на центрифуге Avanti JXN.

Введение

Использование золотых стержневидных наночастиц (AuNR) является весьма перспективным направлением в биомедицинской визуализации. AuNR имеют отчетливо выраженные пики поглощения в области видимой и ближней инфракрасной области спектра благодаря плазмонному эффекту; соотношение сторон AuNR напрямую определяет длину волны пика. Для применения в области биомедицинской визуализации важно иметь оптически чистые образцы золотых стержневидных наночастиц, которые также требуют физической чистоты. Однако процесс синтеза AuNR обычно приводит к появлению некоторых посторонних примесей в форме золотых наносфер (которые не вытягиваются) и неоптимальных AuNR с немного отличающимися соотношениями сторон. Поскольку AuNR и золотые наносферы (AuNS) имеют один и тот же состав элементов, одинаковое покрытие поверхности в результате синтеза (в большинстве случаев - поверхностно-активное вещество цетилтриметиламмоний бромид-ЦТАБ (СТАВ)) и сходные размеры, их разделение представляет собой большую проблему.

Центрифугирование в градиенте плотности (DGC) обладает высокой способностью к разделению наночастиц с одинаковыми размерами, но с различной плотностью из-за незначительных сдвигов в соотношении площади поверхности/объема. В рамках данного исследования мы работали с двумя образцами чистых AuNR: один 10 нм х 41 нм с плазмоном 800 нм (соотношение сторон 41); другой 25 нм х 60 нм с плазмоном 650 нм (соотношение сторон 2,4). Образцы были смешаны, а затем разделены с помощью одноэтапного DGC на центрифуге Avanti JXN с использованием ротора JS-24.15. По результатам оптической спектроскопии отдельные образцы AuNR были такими же чистыми, как и исходные образцы перед смешиванием.

Протокол

Центрифугирование золотых наночастиц в градиенте плотности. Стержневые наночастицы золота (AuNR) диаметром 10 нм (плазмонный пик 808 нм) и диаметром 25 нм (плазмон 650 нм) концентрировали до 0,05 мл путем осаждения 3 мл каждого образца в микроцентрифуге Beckman Coulter Microfuge 16 при 10 000 х g в течение пяти минут и затем ресуспендировали их в воде с 0,01 СТАВ. Градиент плотности устанавливали вручную в 15 мл центрифужных пробирках из полипропилена (каталожный номер 361707), как показано ниже:

Номер градиента	Материал	Объем (мл)
1	0,01 М СТАВ, 10% сахароза	2
2	0,01 М СТАВ, 15% сахароза	4
3	0,01 М СТАВ, 20% сахароза	4
4	0,01 М СТАВ, 25% сахароза	4

Оба образца AuNR обрабатывали ультразвуком в течение пяти минут (ультразвуковой диспергатор Branson MI800), а затем смешивали и наслаивали поверх градиента плотности. Их центрифугировали в течение 15 минут при ускорении

10 750 × g и темепературе 25°С с использованием ротора JS-24.15 в центифуге Avanti JXN-30 производства компании Beckman Coulter. Режимы ускорения и торможения были установлены на 3. После центрифугирования фракции собирали с объемом 300 мкл каждая. Фракции сканировали в отношении пиков с использованием сканера Paradigm и объединяли на основе пиков 808 нм и 650 нм. Смену буфера осуществляли путем гранулирования объединенных фракций с использованием микроцентрифуги Microfuge 16 и их ресуспендирования в 0,01 М СТАВ. Этот этап повторяли три раза, и готовили окончательную суспензию осадка в 250 мл 0,01 М СТАВ. Данные спектрофотометрии с использованием спектрофотометра DU 800 были получены из собранных пиков, а также из образца, смешанного перед центрифугированием, для выявления разделения.

Реагент	Производитель	Каталожный номер
Наночастицы золота, 10 нм	Sigma	716820
Наночастицы золота, 25 нм	Sigma	771686
Сахароза	Sigma	84097
СТАВ	Sigma	H9151

Этап 1

Коммерческий препарат золотых наночастиц, растворенных в 0,1 М СТАВ (Sigma)

Этап 2

Осаждения золотых наночастиц и повторное концентрирование с помощью центрифуги Microfuge 16

Этап 3

Разделение в градиенте плотности с помощью центрифуги Avanti JXN-30

Этап 4

Опредление чистоты каждой фракции по спектру поглощения на анализаторе Paradigm

Этап 5

Концентрирование выбранных фракций с помощью центрифуги Microfuge 16

Этап 6

Определение спектра поглощения выделенных образцов на спектрофотометре DU 800

Результаты

1.6

Плазмон 800 нм Разделенные 2 Поглощение, ОD 1 0 400 600 800 1000

Плазмон 650 нм

3

Длина волны, нм

Рисунок 2. Абсорбционная спектроскопия разделенных образцов наночастиц золота после центрифугирования в градиенте плотности.

Длина волны, нм

Заключение и обсуждение

После анализа чистых образцов методом абсорбционной спектроскопии (рис. 1а) мы смешали образцы вместе и провели повторный анализ спектра поглощения (рис. 1б). Проверка чистоты образцов AuNR может быть проведена путем анализа поглощения продольного плазмонного пика (800 нм и 650 нм для наших образцов) с поглощением поперечного плазмонного пика (515 нм для обоих образцов). В случае чистых образцов плазмонные AuNR 650 нм имели коэффициент поглощения 2,32 при сравнении 650 нм с 515 нм. Для 800 нм плазмонных AuNR соотношение 800 нм и 515 нм составляло 3,85. После фракционирования центрифугированной смеси и сбора оптически чистых образцов мы провели повторный анализ спектра поглощения (рис. 2). Наблюдалось соотношение 650 нм/515 нм на уровне 1,91 - почти такое же высокое, как в случае чистого плазмонного образца 650 нм. Интересно, что для плазмонного образца 800 нм соотношение 800 нм / 515 нм составляло 4,54 - даже выше, чем для чистого образца. Это указывает на то, что в исходном чистом плазмонном образце 800 нм, который был разделен с помощью DGC, присутствовало некоторое загрязнение AuNS.

Рисунок 3. Фотографии центрифужных пробирок с наночастицами золота: (А) до центрифугирования в градиенте плотности; (В) после центрифугирования в градиенте плотности.

Список литературы

- Popovtzer R et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Letters. 8,12; 4593-4596: (2008).
- 2. Huang X et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science. 23,3; 217-228: (2008).
- O'Neal D P et al. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Nano Letters. 209,2; 171-176 (2004).
- 4. Hong G et al. Near-Infrared-Fluorescence-Enhanced Molecular Imaging of Live Cells on Gold Substrates. Angewandte Chemie International Edition. 50,20; 4644-4648: (2011).

Не для применения в медицинских целях.

© 2020 Beckman Coulter, Inc. Все права защищены. Название Beckman Coulter, стилизованный логотип, а также знаки продукции и услуг Beckman Coulter, упомянутые в настоящем документе, являются товарными знаками или зарегистрированными товарными знаками компании Beckman Coulter, Inc. в США и других странах. Все остальные торговые знаки являются собственностью соответствующих владельцев. Продукты, перечисленные в данном документе не предназначены и не валидированы для медицинского применения.

ООО "Бекмен Культер", представительство Beckman Coulter Life Sciences ул. Станиславского, д. 21, стр. 3, Москва, Россия, 109004. тел. +7 (495) 228 67 00, эл. почта: Is-russia@beckman.com, mybeckman.ru

CENT-80APP05.14RU-A