

Isolation of RNA from Bacteria using RNAdvance Tissue Kit

Please reference current RNAdvance Tissue protocol for product information (A32646, A32649, A32645)

RNA isolation from bacterial cultures is a standard extraction method for determining gene expression. Downstream assays usually require high-quality RNA, and the RNA extraction described below results in good yields of high-quality RNA.

Purpose

High-quality RNA from bacterial cultures is critical for obtaining meaningful gene expression data. RNA preparations with lower quality can yield differences in relative gene expression ratios leading to errors in the quantification of transcript levels. This protocol optimizes RNA isolation from a wide range of bacteria using RNAdvance Tissues with lysozyme. Lysozyme is not needed when extracting from gram-negative bacteria.

Material Used

Material	Part Number	Supplier
1.2 mL 96-well plate	AB1127	ThermoFisher Scientific
Lysozyme from chicken egg white	L6876	Sigma-Aldrich
100% Ethanol (Molecular Grade)	AB00138	AmericanBio
Nuclease-free water (Molecular Grade)	AM9932	ThermoFisher Scientific
100 % Isopropanol (Molecular Grade)	AB07015-01000	AmericanBio
7 Bar Magnet for 96-Well Plate	771MWZM-1ALT	V&P Scientific
RNAdvance Tissue Kit	A32646, A32649, A32645	Beckman Coulter Life Sciences

Protocol

1. Sample Preparation

- a. Transfer **150 \muL** of bacterial overnight culture with an OD < 6.5 (or equivalent cell amount) to each well in a 1.2 mL 96-well plate
- b. Pellet by spinning for **5 minutes** at **3000 x** *g*
- $\ensuremath{c}.\ensuremath{\ensuremath{}}$ Remove and discard the supernatant without disrupting the pellet

2. Lysis

- a. Add $400 \ \mu L$ of Lysis Buffer LBE to each sample well
- b. Add $20\;\mu L$ of $Proteinase\;K$ to each sample well
- c. Add **4 µL** of **Lysozyme** (100 mg/mL) to each sample well
- d. Mix by pipetting up and down 10 times, or until thoroughly mixed
- e. Incubate the plate for 30 minutes at 37°C

Accelerating Answers | 1

3. Bind

- a. Vortex the bottle of **Bind Buffer BBC** to fully resuspend the beads
- b. Combine **80 µL Bind Buffer BBC** and **320 µL Isopropanol** for Bind Solution
- c. Add $400 \ \mu L$ of $Bind \ Solution$ to each sample well
- d. Incubate the plate for 5 minutes at room temperature
- e. Place the plate on a **magnet** for **15 minutes** (or until the supernatant is clear)
- f. Remove and discard the supernatant without disrupting the beads
- g. Remove the plate from the magnet

4. Wash

- a. Add $800~\mu L$ of Wash~Buffer~WBD to each sample well
- b. Mix by pipetting up and down 10 times, or until thoroughly mixed
- c. Place the plate on a magnet for 7 minutes (or until the supernatant is clear)
- d. Remove and discard the supernatant without disrupting the beads
- e. Remove the plate from the magnet

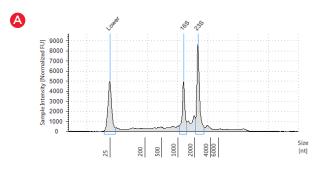
5. Ethanol Wash

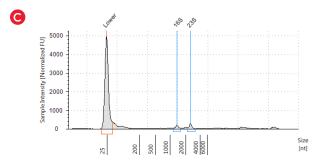
- a. Add $800 \, \mu L$ of $70\% \, Ethanol$ to each sample well
- b. Mix by pipetting up and down 10 times, or until thoroughly mixed
- c. Place the plate on a **magnet** for **4 minutes** (or until the supernatant is clear)
- d. Remove and discard the supernatant without disrupting the beads
- e. Remove the plate from the magnet

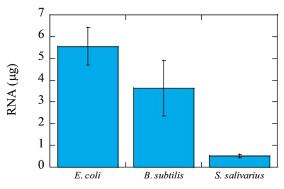
6. DNase Treat

- a. Add $100 \; \mu L$ of $DNase \ solution$ to each sample well
 - i. DNase solution is prepared as follows
 - a. 10 μL of 10x DNase Buffer
 - b. 10 µL of DNase I
 - c. 80 µL of nuclease-free water
- b. Incubate the plate for 1 minute at room temperature
- c. Mix by pipetting up and down 10 times, or until thoroughly mixed
- d. Incubate the plate for 15 minutes at 37°C

7. Rebind


- a. Add $550\;\mu L$ of Wash Buffer WBD to
- b. Mix by pipetting up and down 10 times, or until thoroughly mixed
- c. Incubate the plate for 5 minutes at room temperature
- d. Place the plate on a **magnet** for **6 minutes** (or until the supernatant is clear)
- e. Remove and discard the supernatant without disrupting the beads
- 8. Ethanol Washes (Leave the plate on the magnet for the following steps)
 - a. Add 600 µL of 70% ethanol to
 - b. Place the plate on the magnet for **1 minute**
 - c. Remove and discard the supernatant without disrupting the beads
 - d. Repeat steps 8.a-8.c for a total of **3 washes**
 - e. Remove the plate from the magnet


- 9. Elute
 - a. Add $40~\mu L$ of nuclease-free water to
 - b. Incubate the plate for 2 minutes at room temperature
 - c. Place the plate on a magnet for 2 minutes (or until the supernatant is clear)
 - d. Remove and **Save** the supernatant without disrupting the beads


Example Data

Escherichia coli, Bacillus subtilis, and Streptococcus saliverius were grown overnight in LB media at 37°C. The *E. coli* grew to an OD of 6.59, the *B. subtilis* to an OD of 4.15, and the *S. saliverius* to an OD of 0.94. RNA was extracted from 150 μ L of those overnight cultures as described above. The yield was measured by absorbance at 260 on a NanoDrop (Thermo Fisher Scientific), and integrity was measured using an Agilent Tapestation.

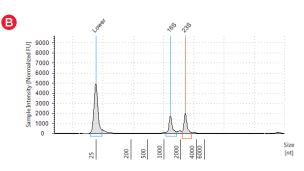

The amount of RNA corresponds to the amount of bacterial input, with larger numbers of bacterial cells resulting in higher yields (Figure 1). The RNA was high quality, with a RIN value of 8.4 for *E. coli*, 9.4 for *B. subtilis*, and 7.4 for *S. saliverius* (Figure 2). This protocol worked well for a wide range of bacterial species and provided high-quality RNA.

Figure 1. RNA Yield. The yield was measured by absorbance at 260. Error bars represent the standard deviation of three replicates.

Figure 2. The figure shows the bacterial RNA integrity analyzed on an Agilent Tapestation. Representative traces displayed for *E. coli* (A), *B. subtilis* (B), and *S. salivarius* (C).

Beckman Coulter makes no warranties of any kind whatsoever express or implied, with respect to this protocol, including but not limited to warranties of fitness for a particular purpose or merchantability or that the protocol is non-infringing. All warranties are expressly disclaimed. Your use of the method is solely at your own risk, without recourse to Beckman Coulter. Not intended or validated for use in the diagnosis of disease or other conditions. This protocol is for demonstration only, and is not validated by Beckman Coulter.

© 2024 Beckman Coulter, Inc. All rights reserved. Beckman Coulter, the stylized logo, and the Beckman Coulter product and service marks mentioned herein are trademarks or registered trademarks of Beckman Coulter, Inc. in the United States and other countries. All other trademarks are the property of their respective owners.

For Beckman Coulter's worldwide office locations and phone numbers, please visit Contact Us at beckman.com A2023-GBL-EN-102628-v2

danaher