Infectious disease-based pandemic monitoring using distributed sewer water samples

Stephen Fitzgerald\(^1\), Alexander Corbishley\(^1\), Tracy Andrews\(^2\), Pierre-Etienne Mahuzier\(^3\), Han Wei\(^4\)
\(^1\)Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
\(^2\)Beckman Coulter Life Sciences, 5550 Lakeview Pkwy S Drive, Indianapolis, Indiana, USA 46268

Introduction

Viral pandemics present a significant threat to public health worldwide, as viruses can be highly infectious and lead to severe disease in high-risk individuals. A significant proportion of patients infected with pandemic influenza and coronaviruses shed viral RNA in their stools. Monitoring of viral RNA levels in wastewater (WW) can help model pandemic progression and decline and have the potential to offer early warning response systems for outbreak detection. The sewer sample surveillance method provides the potential to perform mass testing at a lower cost than conventional, individualized testing. However, there is no standardized testing protocol as yet for monitoring viral RNA in wastewater. Here, we demonstrate a virus concentration and subsequent viral RNA extraction technique from wastewater treatment plant influent samples. The workflow can be further automated on a Beckman Coulter Life Sciences Biomek i5/7 workstation for a robust and reproducible solution for analysis during a viral outbreak.

Methods

Composite 24-hour WW treatment plant influent samples (N=2) were spiked using the enveloped Porcine Reproducive and Respiratory Syndrome (PRRS) virus. Samples were concentrated using either concentration column filtration or polyethylene glycol (PEG) precipitation. RNA was isolated using a Column-based viral RNA extraction kit, RNAAdvance Viral, or TRIzol, following the manufacturer’s recommendations. Target virus RNA copy number was quantified by RT-qPCR.

Sample concentration by filtration

40 mL of WW samples with PRRS virus spike-in were centrifuged at 4000 rpm for 10 mins, the supernatants then passed through a 0.45 μM syringe filter to remove larger microorganisms. Samples were concentrated to about 400 μL using a Vivaspin 20 Centrifugal Filter (50 kDa) on centrifugation at 1,500 x g for up to 30 mins. Half of the final concentrated sample was used for the Column-based viral RNA extraction kit, and half of the sample was used for the RNAAdvance Viral extraction kit.

Results

We observed comparable Ct values between RNAAdvance Viral and the Column-based viral RNA extraction kit when extracting viral RNA from spiked wastewater samples concentrated using filtration columns. Compared to TRIzol extraction following PEG precipitation, RNAAdvance Viral showed higher sensitivity and demonstrated consistent results within all test groups.

Conclusions

In this proof of principle study, we demonstrate RNAAdvance Viral RNA extraction method that is compatible with different wastewater concentration methods. Compare to either the Column-based viral RNA extraction kit or TRIzol, RNAAdvance Viral RNA extraction kit provided comparable or higher recovery rate. The extraction workflow is also amenable to automation that increases reproducibility and reduces variability.

Figure 1. Graphic illustration of the viral wastewater monitoring workflow. First sample is collected and concentrated using either centrifugation, ultrafiltration, or precipitation. RNA then is extracted from the concentrated sample. After viral RNA is extracted, it can be detected in two ways: cell culture methods (e.g., plaque assay) and molecular methods - target detection of RNA with RT-qPCR.

Figure 2. Wastewater samples first concentrated using filtration columns then viral RNA was extracted using either a Column-based viral RNA extraction kit or RNAAdvance Viral kit. Target virus RNA copy number was quantified by RT-qPCR. (A) Ct value and (B) percentage of PRRS was calculated.

Figure 3. Wastewater samples precipitated using PEG and viral RNA was extracted using either TRIzol or RNAAdvance Viral kit. Target virus RNA copy number was quantified by RT-qPCR. (A) Ct value and (B) percentage of PRRS was calculated. *2 out of 6 replicates from TRIzol extraction group showed no amplification and the data points have been omitted from the data set.