Pillar Biosciences oncoRevealTM Solid Tumor v2 Gene Panel on Biomek NGeniuS System App Template Version 1.0.0-1.0.2

Beckman Coulter makes no warranties of any kind whatsoever express or implied, with respect to this protocol, including but not limited to warranties of fitness for a particular purpose or merchantability or that the protocol is non-infringing. All warranties are expressly disclaimed. Your use of the method is solely at your own risk, without recourse to Beckman Coulter. This App Template has been demonstrated for use on the Biomek NGeniuS system for the chemistry kit version and the release date shown at the time when the App is selected and created but has not been validated by Beckman Coulter for use in the diagnosis of disease or other clinical conditions.

Biomek NGeniuS Next Generation Library Preparation System is not labeled for IVD use and is not intended or validated for use in the diagnosis of disease or other conditions.

©2024 Beckman Coulter, Inc. All rights reserved. Beckman Coulter, the stylized logo, and the Beckman Coulter product and service marks mentioned herein, including Biomek and Biomek NGeniuS, are trademarks or registered trademarks of Beckman Coulter, Inc. in the United States and other countries. All other trademarks are the property of their respective owners.

For Beckman Coulter's worldwide office locations and phone numbers, please visit Contact Us at beckman.com

App Template Description

The App Template for Pillar Biosciences* oncoReveal™ Solid Tumor v2 panel prepares sample DNAs for sequencing by amplifying target regions containing mutational hot spots using SLIMamp® (stem-loop inhibition mediated amplification) technology. Per PCR reaction, the oncoReveal™ Solid Tumor v2 panel App Template supports a DNA input mass of 20-60 ng for standard genomic DNA, 20-80 ng for good quality FFPE DNA, and a minimum 40 ng for severely degraded FFPE DNA. Mixed sample type inputs require the addition of Uracil-DNA glycosylase (UDG) for all samples. Libraries can be sequenced on any low- to mid- throughput sequencers such as Illumina MiSeq or NextSeq System.

The App Template allows the user to produce between 4 and 24 libraries in a single continuous batch run. Optionally, users may select from multiple starting and stopping points. Additional stop points with timely user interaction are present to support pre/post PCR environments. The App Template was designed using the Pillar oncoReveal™ Solid Tumor v2 kit (HDA-ST-1002-24). Ethanol wash volumes have been reduced to 60µL from 150µL to reduce tip consumption and sample processing time.

In addition to the consumables listed in the oncoReveal™ Solid Tumor v2 assay User Guide (UM-0065), the following consumables are required for a full run:

- 2.0mL Sarstedt Tubes Skirted Base (Sarstedt P/N: 72.664)
- 5.0mL Sarstedt Tubes False Bottom with Flat Base (Sarstedt P/N: 60.611.310)
- Axygen® 96-well Polypropylene PCR Microplate, Full Skirt, Clear, Nonsterile (Corning P/N: PCR-96-FS-C)

For research use only. Not for use in diagnostic procedures.

Pillar®, SLIMamp® and oncoReveal™ are trademarks of Pillar Biosciences, Inc. Current as of 03.12.2024

2024-GBL-EN-105198-v4

Scoping

Scoping

- Author
 - Pillar scientists with support from Beckman Coulter Life Sciences
- Panel
 - oncoRevealTM Solid Tumor v2
 - Version 3.0 (User Guide UM-0065)
- Supported DNA Input
 - Genomic DNA: 20-60 ng in 4.25 μL
 - FFPE DNA: 20-80 ng good quality, minimum 40 ng severely degraded, in 4.25 μL

Scoping

- Panel kit
 - oncoRevealTM Solid Tumor v2 Panel kit (HDA-ST-1002-24)
- Indexing kit
 - Pillar Custom Indexing Primers Kit A, 32 Combinations, 96 reactions (IDX-PI-1001-96)

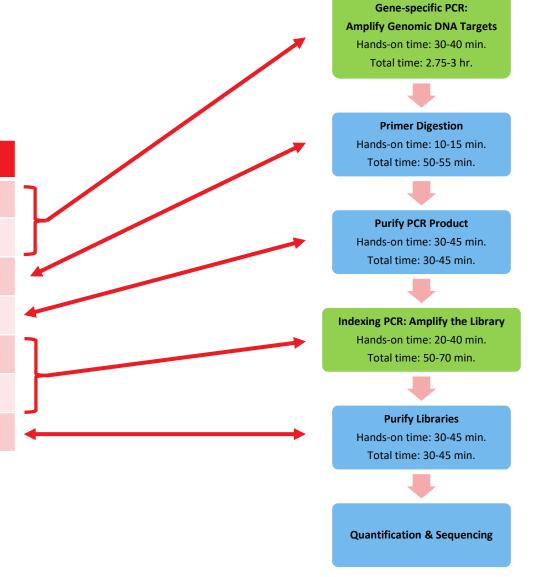
App Details

Sections Automated

App Sections

Gene-Specific PCR Sample Prep

Gene-Specific PCR Amplification


Gene-Specific PCR Exo Digestion

Gene-Specific PCR Product Purification

Indexing PCR Sample Prep

Indexing PCR Amplification

Indexing PCR Product Purification

Post-PCR area

App Sections

Gene-Specific PCR Sample Prep

Gene-Specific PCR Amplification

Gene-Specific PCR Exo Digestion

Gene-Specific PCR Product Purification

Indexing PCR Sample Prep

Indexing PCR Amplification

Indexing PCR Product Purification

PCR steps are each split into two sections.

- * Sample Prep adds the reaction mixes to the DNA
- * Amplification does the thermal cycling

This allows for the Sample Prep and Amplification to be prepared in pre-PCR / post-PCR settings if desired (and if equipment allows), per the User Guide, although it is not necessary in automation.

If starting at Gene-Specific PCR Amplification, the Gene-Specific PCR Master Mix, Solid Tumor v2 Oligo Pool, UDG, and GC Rescue G must have already been added to the samples.

If starting at Indexing PCR Amplification, the Indexing PCR Master Mix and indices must have already been added to the samples.

If stopping after Gene-Specific PCR Sample Prep or Indexing PCR Sample Prep, samples should be retrieved and stored in a timely manner.

App Sections

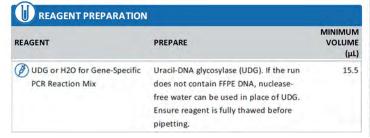
Gene-Specific PCR Sample Prep

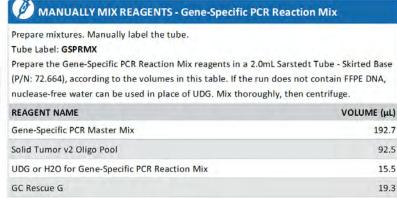
Gene-Specific PCR Amplification

Gene-Specific PCR Exo Digestion

Gene-Specific PCR Product Purification

Indexing PCR Sample Prep


Indexing PCR Amplification


Indexing PCR Product Purification

The App allows for processing both gDNA and FFPE in a single batch run.

- If any sample is FFPE, then Uracil-DNA Glycosylase (UDG) must be included. UDG will not negatively impact performance of gDNA samples. UDG is user-supplied.
- If only gDNA is being processed, the UDG is optional, and can be replaced with H₂O.
- The Gene-Specific PCR Reaction Mix is provided to the system as a user-created manual mix.

In the Work Aid's Reagent Preparation and Manually Mix Reagents sections, the above is mentioned. The Work Aid provides reagent volumes appropriate for the batch size.

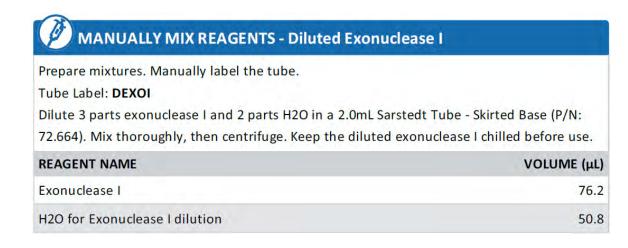
App Sections

Gene-Specific PCR Sample Prep

Gene-Specific PCR Amplification

Gene-Specific PCR Exo Digestion

Gene-Specific PCR Product Purification


Indexing PCR Sample Prep

Indexing PCR Amplification

Indexing PCR Product Purification

The Diluted Exonuclease I is provided to the system as a user-created manual mix (a dilution of the stock Exonuclease I per the User Guide).

In the Work Aid's Reagent Preparation and Manually Mix Reagents sections, the above is mentioned. The Work Aid provides reagent volumes appropriate for the batch size.

App Sections

Gene-Specific PCR Sample Prep

Gene-Specific PCR Amplification

Gene-Specific PCR Exo Digestion

Gene-Specific PCR Product Purification

Indexing PCR Sample Prep

Indexing PCR Amplification

Indexing PCR Product Purification

The App, as designed by Pillar, does not make use of the Micronic-compatible carousel for introducing indices onto the Biomek NGeniuS system.

- 5 μL of each forward and reverse primer are manually added to an Axygen 96-well PCR Microplate (P/N: PCR-96-FS-C)
- Biomek NGeniuS system will aliquot out of the microplate into a cold storage RV.

In the Work Aid's Reagent Preparation section, the above is mentioned.

REAGENT	PREPARE	MINIMUM VOLUME (μL)
Indices IndexPlate: default	Add 5 µL of the assigned forward and reverse indexing primers to wells of an Axygen 96-well Polypropylene PCR Microplate, Full Skirt, Clear, Nonsterile (P/N: PCR-96-FS-C). It is recommended to match sample and index well positions. Centrifuge before use to ensure there are no bubbles. Wells: A1, B1, C1, D1	10.0

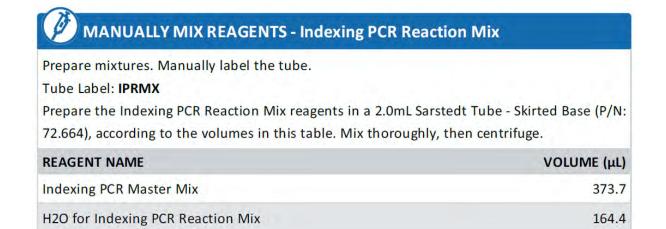
App Sections

Gene-Specific PCR Sample Prep

Gene-Specific PCR Amplification

Gene-Specific PCR Exo Digestion

Gene-Specific PCR Product Purification


Indexing PCR Sample Prep

Indexing PCR Amplification

Indexing PCR Product Purification

The Indexing PCR *Reaction* Mix is provided to the system as a user-created manual mix (a dilution of the stock Indexing PCR Master Mix per the User Guide).

In the Work Aid's Reagent Preparation section, the above is mentioned. The Work Aid provides reagent volumes appropriate for the batch size.

App Settings

Setting	Description
Mix beads during Exo digestion	When on, mixes AMPure beads during the Exonuclease Digestion section to prevent them from settling. If not selected, mixing will only occur directly before Gene-Specific Product Purification.
IndexPlate	Allows the operator to enter in a name for the index plate being used in the batch.
Indexing PCR Cycles	Allows the operator to set the number of indexing PCR cycles performed within a range of 6-10.

Requested Reagent Volumes

Reagent	HDA-ST-1002-24 kit volumes ¹	4 samples volume requested	8 samples volume requested	16 samples volume requested	24 samples volume requested
Gene-Specific PCR Master Mix ²	470	80.2	130.2	230.2	330.2
Solid Tumor v2 Oligo Pool ²	230	38.5	62.5	110.5	158.5
GC Rescue G ²	50	8.1	13.1	23.1	33.1
UDG ^{2,3}	User supplied	6.6	10.5	18.5	26.5
Exonuclease I ⁴	190	49.2	61.2	85.2	109.2
Indexing PCR Master Mix ⁵	910	148.7	248.7	448.7	648.7
AMPure XP	User supplied	720	1240	2120	3000
70% EtOH	User supplied	4960	5920	7840	9760

¹ All values in μL, consumed volumes are less than requested due to source labware dead volume requirements

⁵ Reagent is combined with H₂O as a manual mixture to create Indexing PCR Reaction Mix

² Reagents are combined as a manual mixture with user-supplied UDG or H₂0 to create Gene-Specific PCR Reaction Mix

³ UDG volumes are listed as if at least one FFPE sample was being processed, otherwise UDG is replaced by H₂O

⁴ Reagent is combined with H₂O as a manual mixture to create Diluted Exonuclease I

Batch Runs Per Kit

Batch size	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Batches per kit	5	5	4	3	3	3	3	2	2	2	2	2	2	1	1	1	1	1	1	1	1
Samples	20	25	24	21	24	27	30	22	24	26	28	30	32	17	18	19	20	21	22	23	24
Largest batch with leftover volume	0	0	0	6	0	0	0	8	6	4	0	0	0	15	14	13	12	11	10	9	8
Total estimated samples from kit	20	25	24	27	24	27	30	30	30	30	28	30	32	32	32	32	32	32	32	32	32

- The **Batch size** can be run **Batches per kit** times, leaving enough reagent volume to do one additional batch with **Largest batch with leftover volume** samples.
- Run combinations calculated based on reagent vial volumes provided by Pillar.
- 5 μL of each index (PI50X and PI7XX) is required per sample. The index primer kits have enough reagent per-index to support 96 samples-worth of Biomek NGeniuS system batch runs.

Estimated Time of Completion

Samples	4	8	16	24
Index Aliquot	00:01	00:01	00:02	00:04
Reagent Aliquot	00:15	00:18	00:21	00:23
Processing	05:12	05:21	06:08	06:57
Total ETC	05:29	05:41	06:32	07:25

Times (hours:minutes) calculated based on 6 indexing PCR cycles, bead mixing, and with all plate-based indices contiguous starting with well A1. Does not include times needed for manual interactions (e.g., reagent thawing, manual pipetting, placing labware into Biomek NGeniuS System, ...).

Consumables

		Batch Size (samples)					
Consumable	Part number	4	8	16	24		
RVs	C62705	7	7	7	7		
Bulk Reservoirs	C62707	1	1	1	1		
Lids	C62706	4	4	4	4		
Millitips (boxes)	C59585	6 (1)	11 (1)	12 (1)	12 (1)		
Microtips (boxes)	C62712	121 (1)	237 (1)	453 (2)	669 (2)		
Seal plate	C70665	1	1	1	1		
5.0 mL Sarstedt® vial	60.611*	1	1	1	1		
2.0 mL Sarstedt® vial	72.664*	3	3	3	3		
Axygen® 96-well PCR Microplate	PCR-96-FS-C*	1	1	1	1		
Price Per Sample (\$)**	-	37.84	18.92	11.14	7.42		

Costs assume a single batch run using fresh tip boxes. Some clean tips will remain each run, reducing cost of subsequent runs.

^{**} Costs do not include Sarstedt reformat vials, Axygen plate, or empty tip boxes for tip disposal.

^{* 3&}lt;sup>rd</sup> party part numbers.

Demonstration Data

Experimental Design for Demonstration Run Conditions

Experiment	Sample Throughput	Target Sample Mass (ng)	PCR Cycles	Site
1	4*	60 ng gDNA, 80 ng FFPE (Moderate), 80 ng FFPE (Severe)	6	Pillar Biosciences
2	13*	40 ng gDNA, 50 ng FFPE (Moderate), 50 ng FFPE (Severe)	6	Beckman Coulter Life Sciences
3	24**	20 ng gDNA, 20 ng FFPE (Moderate), 40 ng FFPE (Severe)	6	Pillar Biosciences

^{*} One negative control (NTC) per experiment

gDNA: Coriell NA12878.

FFPE: Horizon Discovery Quantitative Multiplex Reference Standard fcDNA Moderate and Severe

The nM concentration was determined using the following formula:

LibraryConcentration[nM] = LibraryConcentration[ng/ μ L] x 5.

The ng/µL concentration of the samples was determined using a 1X Qubit dsDNA HS Assay Kit.

Library Construction Pass Criteria:

- Sample library yields >3.5 nM
- Non-Template control <2.5 nM

^{**} Three negative controls (NTC) per experiment

Demo run 1, 4 samples, high input mass

Target Library Prep Input Mass, gDNA (ng):	60
Target Library Prep Input Mass, FFPE Moderate (ng):	80
Target Library Prep Input Mass, FFPE Severe (ng):	80
PCR Amplification Cycles:	6
Version:	1.0.0

Sample	Stock conc (ng/μL)	Index Pair	Library Yield (nM)
gDNA Sample 1	13.95	Pi712 / Pi501	73.5
FFPE Moderate Sample 1	18.6	Pi712 / Pi502	80.5
Negative Control	N/A	Pi712 / Pi503	0.278
FFPE Severe Sample 1	18.6	Pi712 / Pi504	66.5

All sample yields > 3.5 nM All control yields < 2.5 nM

Demo run 2, 13 samples, mid input mass

Target Library Prep Input Mass, gDNA (ng): 40
Target Library Prep Input Mass, FFPE Moderate (ng): 50
Target Library Prep Input Mass, FFPE Severe (ng): 50
PCR Amplification Cycles: 6
Version: 1.0.1

Sample	Stock conc (ng/μL)	Index Pair	Library Yield (nM)
gDNA Sample 1	9.3	Pi702 / Pi514	135
FFPE Moderate Sample 1	11.6	Pi702 / Pi515	121.25
FFPE Severe Sample 1	11.6	Pi702 / Pi516	92.25
gDNA Sample 2	9.3	Pi703 / Pi509	141
FFPE Moderate Sample 2	11.6	Pi703 / Pi510	109.5
FFPE Severe Sample 2	11.6	Pi703 / Pi511	107.25
gDNA Sample 3	9.3	Pi703 / Pi512	132.5
FFPE Moderate Sample 3	11.6	Pi703 / Pi513	130
FFPE Severe Sample 3	11.6	Pi703 / Pi514	52
Negative Control	0	Pi703 / Pi515	0.3075
gDNA Sample 4	9.3	Pi703 / Pi516	102.75
FFPE Moderate Sample 4	11.6	Pi704 / Pi509	80.75
FFPE Severe Sample 4	11.6	Pi704 / Pi510	68.5

All sample yields > 3.5 nM All control yields < 2.5 nM

Sample	Stock conc (ng/μL)	Index Pair	Library Yield (nM)
gDNA Sample 1	4.65	Pi709 / Pi501	150.5
FFPE Moderate Sample 1	4.65	Pi709 / Pi502	81.5
FFPE Severe Sample 1	9.3	Pi709 / Pi503	119.5
Negative Control	0	Pi709 / Pi504	1.21
gDNA Sample 2	4.65	Pi709 / Pi505	144.5
FFPE Moderate Sample 2	4.65	Pi709 / Pi506	74.5
FFPE Severe Sample 2	9.3	Pi709 / Pi507	110
gDNA Sample 3	4.65	Pi709 / Pi508	154
FFPE Moderate Sample 3	4.65	Pi710 / Pi501	59.5
FFPE Severe Sample 3	9.3	Pi710 / Pi502	102
gDNA Sample 4	4.65	Pi710 / Pi503	135
FFPE Moderate Sample 4	4.65	Pi710 / Pi504	55.5
FFPE Severe Sample 4	9.3	Pi710 / Pi505	88
Negative Control	0	Pi710 / Pi506	1.09
gDNA Sample 5	4.65	Pi710 / Pi507	139
FFPE Moderate Sample 5	4.65	Pi710 / Pi508	56.5
FFPE Severe Sample 5	9.3	Pi711 / Pi501	96
Negative Control	0	Pi711 / Pi502	1.16
gDNA Sample 6	4.65	Pi711 / Pi503	115.5
FFPE Moderate Sample 6	4.65	Pi711 / Pi504	51
FFPE Severe Sample 6	9.3	Pi711 / Pi505	79
gDNA Sample 7	4.65	Pi711 / Pi506	129
FFPE Moderate Sample 7	4.65	Pi711 / Pi507	68.5
FFPE Severe Sample 7	9.3	Pi711 / Pi508	94

Demo run 3, 24 samples, low input mass

Target Library Prep Input Mass, gDNA (ng):	20
Target Library Prep Input Mass, FFPE Moderate (ng):	20
Target Library Prep Input Mass, FFPE Severe (ng):	40
PCR Amplification Cycles:	6
Version:	1.0.0

All sample yields > 3.5 nM All control yields < 2.5 nM

Sequencing and Variant Analysis

Sequencing Setup

Experiment Sequencer	
1	NextSeq500
2	MiSeq
3	NextSeq500

All experiment runs pooled to 3.85 nM and then loaded on flow cell at 1.8pM. Runs 1 & 3 were sequenced concurrently.

Run 2 was sequenced individually.

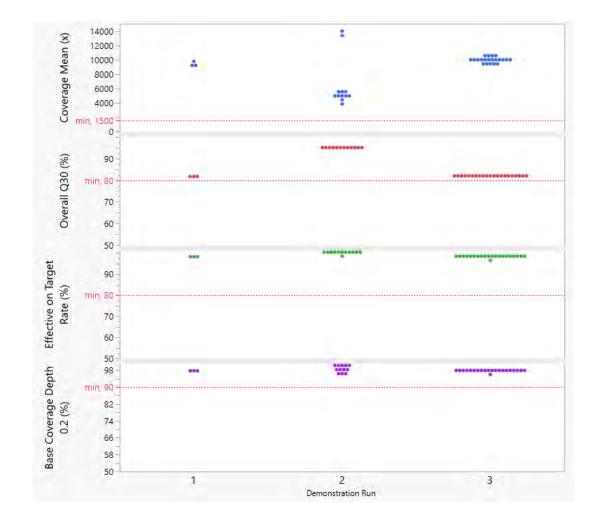
Analysis App: Pillar PiVAT RUO, version 2023.1.1

Sequencing QC Results – NTC Variant Calls

Run	Sample	Variant Calls	Pass Calls Metric (0)
1	01C_20240805_Demo1_NTC	0	Pass
2	240903-STV2-Demo2-B2-NTC	0	Pass
3	01D_20240807_Demo3_NTC	0	Pass
3	02F_20240807_Demo3_NTC	0	Pass
3	03B_20240807_Demo3_NTC	0	Pass

Sequencing QC Results – Samples by Run

Coverage mean for all samples are ≥ 1500x.



Overall Q=30 for all samples are > 80%.

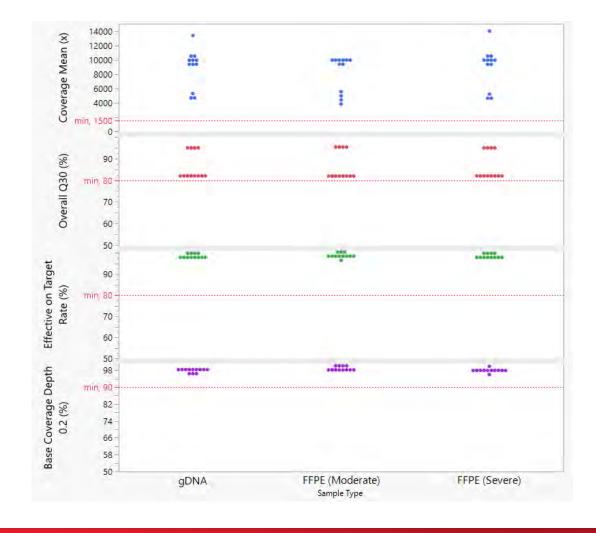
Effective On Target Rate for all samples are ≥ 80%.

 Base_Coverage_Depth_>_(Nx)_Relative_to_Mean _Coverage 0.2 for all samples is <u>></u> 90%.

Sequencing QC Results – Samples by Type

Coverage mean for all samples are ≥ 1500x.

Overall Q=30 for all samples are ≥ 80%.


Pass

Effective On Target Rate for all samples are > 80%.

Pass

 Base_Coverage_Depth_>_(Nx)_Relative_to_Mean _Coverage 0.2 for all samples is <u>></u> 90%.

Pass

Expected Variants for Horizon Libraries (FFPE Samples)

Chromosome	Variant	Approximate Allele Frequency (%)	Average Variant Read Frequency (%), FFPE Moderate (StdDev)	Average Variant Read Frequency (%), FFPE Severe (StdDev)	Variant Detection Rate (%)	Detection Pass Metric (%)	Pass Detection Metric (95%)
7	BRAF V600E	10.5	11.92 (0.63)	12.49 (0.60)	100	95	Pass
7	EGFR G719S	24.5	22.88 (0.88)	23.20 (0.95)	100	95	Pass
7	EGFR L858R	3	3.36 (0.43)	4.01 (0.39)	100	95	Pass
4	KIT D816V	10	8.20 (0.46)	9.92 (0.52)	100	95	Pass
12	KRAS G12D	6	6.29 (0.65)	6.24 (0.53)	100	95	Pass
12	KRAS G13D	15	15.17 (0.99)	15.90 (1.24)	100	95	Pass
1	NRAS Q61K	12.5	13.00 (1.02)	13.18 (1.11)	100	95	Pass
3	PIK3CA E545K	9	7.50 (0.56)	8.22 (0.75)	100	95	Pass
3	PIK3CA H1047R	17.5	17.96 (1.13)	18.72 (0.68)	100	95	Pass
7*	EGFR DeltaE746 - A750	2	2.10 (0.04)	2.34 (0.30)	50	N/A	N/A*
7*	EGFR T790M	1	0 (0)	0 (0)	0	N/A	N/A*

Variants at or above an expected frequency of 3% are specified. Across all replicates, at least 95% of variants should be called.

^{*}The expected allele frequency is below the 3% cutoff for this assay. As such, a 100% detection rate is not expected, and variants are excluded from pass criteria.

Variants Not Expected for gDNA Libraries

Chromosome	Variant	Approximate Allele Frequency (%)	Average Variant Read Frequency (%), gDNA (StdDev)	Variant <i>Not</i> Detected Rate (%)	Detection Pass Metric (%)	Pass Detection Metric (0%)
7	BRAF V600E	0	0 (0)	100	90	Pass
7	EGFR G719S	0	0 (0)	100	90	Pass
7	EGFR L858R	0	0 (0)	100	90	Pass
4	KIT D816V	0	0 (0)	100	90	Pass
12	KRAS G12D	0	0 (0)	100	90	Pass
12	KRAS G13D	0	0 (0)	100	90	Pass
1	NRAS Q61K	0	0 (0)	100	90	Pass
3	PIK3CA E545K	0	0 (0)	100	90	Pass
3	PIK3CA H1047R	0	0 (0)	100	90	Pass
7*	EGFR DeltaE746 - A750	0	0 (0)	100	N/A	N/A*
7*	EGFR T790M	0	0 (0)	100	N/A	N/A*

No variants specified above should be called in NA12878 libraries. 90% of NA12878 libraries must pass.

^{*}Variants are excluded from pass criteria.

Variants Expected for gDNA Libraries

Chromosome	Gene	Location	Approximate Allele Frequency (%)	Average Variant Read Frequency (%), gDNA (StdDev)	Variant Detection Rate (%)	Detection Pass Metric (%)	Pass
7	EGFR	chr7:55249063-55249063	49.2	49.64 (0.70)	100	100	PASS
4	FGFR3	chr4:1807894-1807894	99.5	98.71 (0.15)	100	100	PASS
19	KEAP1	chr19:10600442-10600442	50	49.97 (0.72)	100	100	PASS
4	PDGFRA	chr4:55141055-55141055	99.9	99.43 (0.14)	100	100	PASS
4	PDGFRA	chr4:55152040-55152040	50	47.48 (1.19)	100	100	PASS
12	POLE	chr12:133236000-133236000	99.7	99.04 (0.26)	100	100	PASS
12	POLE	chr12:133257837-133257837	48.5	49.80 (0.89)	100	100	PASS
10	RET	chr10:43613843-43613843	99.7	99.30 (0.10)	100	100	PASS

Coriell NA12878 is a high-quality genomic DNA (gDNA) sample extracted from a well-characterized genome in a bottle cell line. All variants specified should be called.

Unexpected High Impact Variants for gDNA Libraries

Run	Sample	Count Max_Impact = HIGH	Metric
1	01A_20240805_Demo1_TV2_60ng	0	Pass
2	240903_STV2_Demo2_A1_TV2_40ng	0	Pass
2	240903_STV2_Demo2_D1_TV2_40ng	0	Pass
2	240903_STV2_Demo2_G1_TV2_40ng	0	Pass
2	240903_STV2_Demo2_C2_TV2_40ng	0	Pass
3	01A_20240807_Demo3_TV2_20ng	0	Pass
3	01E_20240807_Demo3_TV2_20ng	0	Pass
3	01H_20240807_Demo3_TV2_20ng	0	Pass
3	02C_20240807_Demo3_TV2_20ng	0	Pass
3	02G_20240807_Demo3_TV2_20ng	0	Pass
3	03C_20240807_Demo3_TV2_20ng	0	Pass
3	03F_20240807_Demo3_TV2_20ng	0	Pass

No high impact variants (PiVAT Max_Impact = HIGH), should be called. 90% of NA12878 libraries must pass. Unexpected variants not specified in previous slide that are not high impact are acceptable.

Demonstration Summary

Demonstration Metrics Summary

Metric	Run 1	Run 2	Run 3
All sample yields > 3.5 nM	Pass	Pass	Pass
All negative controls < 2.5 nM	Pass	Pass	Pass
No NTC Variant Calls	Pass	Pass	Pass
Coverage mean for all samples are ≥ 1500x	Pass	Pass	Pass
Overall Q=30 for all samples are ≥ 80%	Pass	Pass	Pass
Effective On Target Rate for all samples are ≥ 80%	Pass	Pass	Pass
Base_Coverage_Depth_>_(Nx)_Relative_to_Mean_Coverage 0.2 for all samples is ≥ 90%	Pass	Pass	Pass
Horizon Moderate and Severe FFPE samples should have the specified variants called	Pass	Pass	Pass
No variants specified for FFPE samples should be called in NA12878 libraries	Pass	Pass	Pass
NA12878 gDNA samples should have the specified variants called	Pass	Pass	Pass
No unexpected high impact variants should be called in NA12878 gDNA samples	Pass	Pass	Pass

Demonstration Summary

- The oncoRevealTM Solid Tumor v2 App, written by Pillar, on the Biomek NGeniuS Next Generation Library Prep System prepares libraries at input masses between 20 and 60 ng of genomic DNA, 20 – 80 ng of moderately degraded FFPE DNA, and a minimum of 40 ng severely degraded FFPE DNA
- Yield at all tested input masses exceeded 3.5 nM final concentration
- gDNA and FFPE samples can be processed simultaneously
- NextSeqTM 550 sequencing data of prepared libraries passes all Pillar metrics for:
 - Mean coverage
 - Overall %Q30
 - Effective on target rate
 - Variant Detection rate for genes of interest

General automation considerations

- Please read and understand Biomek NGeniuS System IFU, C43212
- Spin down index plate before use to make sure indices are at the bottom of wells
- Do not use unsupported index plates
 - Only Axygen® PCR-96-FS-C is supported for this App
 - If the plate geometry is not the same, it could result in an instrument crash
- Make sure foil, if present, of each index well is widely opened to prevent tip-friction binding and lifting
 of Index Plate
 - Use a new P200 or P1000 to pierce and widen each well being used
- Avoid bubbles in reagent tubes to ensure accurate liquid level sensing and aliquoting
- The Work Aid requests more volume than what is consumed
 - Dead volume is needed in source tubes to ensure enough is available due to tolerance stack-ups
- Dead volume will be left behind in some storage wells
 - The nature of automation, tolerance stack-ups, and environment necessitates some overage
- Make sure bulk reagents wet the entire length of reservoir
 - Ensures accurate liquid volume sensing
- Prepare samples while Biomek NGeniuS System is aliquoting reagents
 - Avoids sample evaporation while Biomek NGeniuS System is preparing run

oncoRevealTM Solid Tumor v2 App specific considerations

- Read and understand the oncoRevealTM Solid Tumor v2 user guide, UM-0065
- Master mixes are manually prepared to reduce dead volumes and maximize kit usage
- It's recommended to set Mix beads during Exo digestion setting to ON for application runs, as it reduces sample processing time and bead settling prior to Gene-Specific PCR Product Purification.
- Prepared Diluted Exonuclease I reagent is highly viscous. Operators should thoroughly centrifuge the prepared reagent tube until no liquid remains on vial walls.
- 6 Indexing PCR cycles is recommended for the oncoRevealTM Solid Tumor v2 App. Users have the option to increase the Indexing PCR cycle count, but results may differ from those presented in this document.
- Index plate is manually prepared to reduce dead volumes and maximize kit usage
- An excess (~4mL) of H₂O and EtOH is called for in the Work Aid to speed sample processing

App Template Revision Notes

- 1.0.0 Demonstration data obtained.
- 1.0.1 App Template Description updated. Chemistry unaffected.
- 1.0.2 App Template Description updated. Chemistry unaffected.

This document contains proprietary information owned by Beckman Coulter, Inc.

Any disclosure, use, copying or distribution of this information without the express written consent of Beckman Coulter, Inc. is strictly prohibited.

©2024 Beckman Coulter, Inc. All rights reserved. Beckman Coulter, the stylized logo, and the Beckman Coulter product and service marks mentioned herein are trademarks or registered trademarks of Beckman Coulter, Inc. in the United States and other countries. All other trademarks are the property of their respective owners.

