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INTRODUCTION
 Studying associating systems in the analytical ultracentrifuge 
allows one to fully characterize the thermodynamics of these association 
reactions at equilibrium. An advantage to the experimenter is that the 
macromolecule can be studied directly in solution under conditions 
of choice. By varying these conditions, several parameters can be 
determined: molecular weights, stoichiometry, association constants 
(tightness	of	binding),	nonideality	coefficients,	and	thermodynamic	
parameters such as the changes in Gibbs free energy, enthalpy, and 
entropy associated with binding (ΔG, ΔH, and ΔS). These parameters 
can be studied with both self-associating systems and associations of 
unlike species (hetero-associations). This primer will describe both simple 
and complex methods needed to examine self-associating systems in an 
approach requiring little or no advance knowledge of the characteristics 
of the interactions involved. Hetero-associations require a different 
approach and will be covered in a separate review.

 The initial characterization of an association reaction involves 
several experiments to obtain information about the homogeneity of 
the system, monomer molecular weight, reversibility of the reaction, 
stoichiometry, and nonideality. These experiments require various run 
conditions and the use of data analysis procedures and diagnostic plots 
that provide estimates for these characteristics. The most straightforward 
initial approach is to measure molecular weights under denaturing vs. 
native conditions. A simple average molecular weight determination 
will reveal if an association is taking place and provide an initial estimate 
of stoichiometry. Further diagnostic plots may give better estimates of 
stoichiometry, reversibility, and nonideality.

	 When	initial	experiments	yield	sufficient	information,	more	
detailed analysis can be undertaken. Through the use of nonlinear 
regression techniques, a more accurate analysis of the system is 
accomplished	by	direct	fitting	of	the	primary	data	to	a	model	describing	
the	association.	By	comparing	goodness	of	fit	of	the	experimental	data	to	
the calculated data, a model best describing the association can usually be 
discerned.	Care	must	be	taken	in	statistical	analysis	to	ensure	that	the	fit	
of	the	data	to	the	selected	model	is	significantly	better	than	to	alternative	
models. If not, more experiments may be needed to distinguish between 
models. Fitting in this manner can give accurate determination of 
average molecular weights, (Mn, Mw, and Mz), association constants, and 
nonideality	as	measured	by	virial	coefficients.	Also,	this	procedure	allows	
one	to	confirm	stoichiometries	estimated	from	other	experiments	and	to	
incorporate baseline errors in the data.
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 In all calculations, several parameters are needed: ω2, 
determined from the rotor speed; R, the gas constant; T, the temperature 
in Kelvin; v̄,	the	partial	specific	volume	determined	from	the	sample	
composition or by measurement, and ρ, the density determined from the 
solvent composition. The last two are the most variable in a system and 
can therefore lead to the greatest error in calculations.

 From a single experiment, only the buoyant molecular weight is 
measurable directly in the analytical ultracentrifuge. This value, M(1 - v̄ρ), 
is the molecular weight of the sample corrected by a buoyancy factor 
due to displaced solvent. In the case of multiple species, M(1 - v̄ρ) will 
be a statistical average of the molecular weights of all species present 
in solution. Different molecular weight averages can be determined by 
various treatments of sedimentation equilibrium data. More detailed 
analyses of the associations as described above require that the data from 
several experiments be examined simultaneously.

 Three parameters necessary for the analysis of self-associating 
systems are not determined by run conditions. These are v̄, ρ, and 
monomer molecular weight. Calculation of these parameters is 
needed to begin an analysis. Calculations of v̄ and ρ are described in 
Appendices B and C, respectively. If sample composition is not known, 
monomer molecular weight can be determined experimentally from 
a run in denaturing conditions. Also, alternative methods such as mass 
spectrometry give accurate subunit molecular weight determinations.
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MOLECULAR WEIGHT 
DETERMINATION 
BY SEDIMENTATION 
EQUILIBRIUM
 When sedimentation and diffusion come to a state of 
equilibrium, no apparent movement of solute occurs. The equilibrium 
concentration distribution is dependent on the buoyant molecular weight, 
M(1 - v̄ρ); angular velocity, ω2; and temperature. Since the concentration 
distribution is dependent on the buoyant molecular weight, it is obvious 
that accurate values of v̄ and ρ are necessary for the determination of 
molecular weight from equilibrium conditions.

 From the Lamm (1929) equation describing movement of 
molecules	in	a	centrifugal	field,	the	following	equation	can	be	derived	for	
a single, thermodynamically ideal solute:

 A plot of ln(c) vs. r2 will yield a straight line with a slope 
proportional to M. For nonideal or associating systems, or when multiple 
species are present, a straight line is not obtained, and more rigorous 
analysis is needed. Nevertheless, as shown in Figure 1, this analysis 
provides	a	first	approximation	of	M and can indicate thermodynamic 
nonideality or polydispersity in the sample.

Equation 1
ln(cr )

r2
=

M(1 − vρ)ω2

2RT
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 From the graph it is apparent that nonideality and polydispersity 
have opposite effects so that the presence of both in a sample may be 
offsetting and thus not discernible. It should also be noted that small 
amounts of aggregation, such as 10% or less of a sample present as a 
dimer, will not be detectable by this method.

 The slope of the ln(c) vs. r2 plot is one of a group of statistical 
averages of the molecular weight and is known as the weight-average 
molecular weight, Mw. Other treatments of sedimentation equilibrium 
data allow determination of number-average (Mn), z-average (Mz), and 
higher order molecular weight averages (Correia and Yphantis, 1992)  
(see Figure 2).

b
a

c

r2

ln (c)

Figure 1. Graph of ln(c) vs. r2 showing curves from ideality
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 If the solution is polydisperse, then sedimentation equilibrium 
experiments yield an average molecular weight, not that of any single 
component. Mn , Mw, and Mz	give	increasing	significance,	respectively,	to	
those components in a mixture with the highest molecular weights. Thus, 
for a polydisperse system, Mn < Mw < Mz. If a solution is monodisperse, 
then Mn = Mw = Mz. A comparison of the molecular weight averages can 
therefore provide a good measure of homogeneity.

 If the plot of ln(c) vs. r2 is nonlinear, tangents to the curve yield a
weight-average molecular weight for the mixture of species present at 
each radial position. In this manner the user can obtain molecular weight 

Mn =

Mw = 

Mz =

(number-average)

(weight-average)

(z-average)

∑niMi
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Figure 2. Molecular weight averages. a) Calculation of molecular weight averages; 
b) graph showing distribution in a polydisperse system.
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as a function of increasing solute concentration moving down the cell. 
Overlaying plots of data from samples of different starting concentrations 
will provide information about the presence of more than one species 
in the cell, the ability to distinguish polydisperse and self-associating 
systems, and, in the latter case, an estimate of the monomer molecular 
weight and stoichiometry.
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INITIAL EXPERIMENTAL 
APPROACH TO 
ANALYZING SELF-
ASSOCIATING SYSTEMS
 An initial level of analysis involves a characterization of the 
sample using diagnostic graphs. This level of analysis is qualitative and 
simply determines if the sample is homogeneous, ideal, and whether or 
not a self-association is occurring. In many cases, estimates of monomer 
molecular weight and stoichiometry are also possible at this level, but 
quantitative determination of thermodynamic parameters will require 
more	rigorous	nonlinear	least-squares	fitting	procedures	that	will	be	
described in more detail in a following section. Qualitative analyses do, 
however, provide excellent starting guesses for models in more 
complex analyses. 

 To determine these parameters, data from runs under both 
denaturing and nondenaturing conditions need to be compared. The 
two most commonly used denaturants are 8 M urea and 6 M guanidine-
HCl. Both have effects on v which should be taken into account during 
data analysis. In addition, data from samples run at multiple starting 
concentrations and multiple rotor speeds will be required. This approach 
is described by Laue (1992).

 Typically, a range of starting concentrations with absorbances 
from 0.1 to 1.0 is employed. The simplest way to obtain this range of 
concentrations is to perform a serial dilution. Generally, the absorbance 
variation	is	scaled	for	a	single	wavelength,	but	if	the	extinction	coefficients	
are known for several wavelengths, this added information can be used to 
convert all absorbances to the same concentration scale using the Beer-
Lambert Law,* which permits an even wider range of concentrations to 
be used. 

 Rotor speeds are chosen to straddle the estimated optimum 
rotor speed for the sedimentation equilibrium run. Figure 3 shows 
optimum speeds for an equilibrium run if either the molecular weight or 
sedimentation	coefficient	can	be	estimated	for	the	sample.

* Beer-Lambert Law: A = log(I0/I) = εcl, where I0 = intensity of the 
incident radiation; I is the intensity of light transmitted through a 
pathlength l in cm, containing a solution of concentration c moles per 
liter; ε	is	the	molar	extinction	coefficient	with	units	liter	mole-1 cm-1; 
A is the absorbance.
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	 A	set	of	at	least	three	speeds	is	chosen	to	yield	significantly	
varied data for the diagnostics (Laue, 1992). For three speeds, the ratio 
of the squares of the two slower speeds should be 1.4 or greater, and 
the ratio of the squares of the fastest and slowest speeds should be 3 or 
greater. For example, if an optimum rotor speed is estimated as 20,000 
rpm, a good choice of three speeds would be 16,000, 20,000, and 30,000 
rpm [(20,000/16,000)2 = 1.56 and (30,000/16,000)2 = 3.52]. Data should 
be	acquired	at	the	lowest	speed	first,	then	at	progressively	higher	speeds	
to minimize the time to reach equilibrium. If data need to be acquired at 
a slower speed, it is advantageous to stop the rotor and gently shake the 
cells rather than simply lowering the speed, because redistribution from 
diffusion is quite slow.

0.25 1 2 3 4 5 6 10 20 30
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Figure 3. Optimum speeds for equilibrium runs if either molecular weight or 
sedimentation coefficient can be estimated. (Reprinted from Chervenka, 1970.)
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MOLECULAR WEIGHT VS. 
CONCENTRATION
DIAGNOSTIC GRAPHS
 The data collected as described in the preceding section allow 
the apparent molecular weight to be plotted as a function of sample 
loading concentration and rotor speed. Since the sample was run under 
denaturing conditions, Mw can also be calculated relative to monomer 
molecular weight. These graphs provide an initial characterization of the 
system with respect to: 1) homogeneity, 2) nonideality, 3) self-association 
(with limited information about stoichiometry), and 4) polydispersity.

 Laue (1992) uses a plot of the apparent weight-average 
molecular weight vs. the midpoint absorbance (Figure 4). If the 
sample obeys the Beer-Lambert Law, absorbance and concentration 
will be proportional.

 This graph is useful in the detection of three possible 
conditions in the sample run with multiple concentrations. If the 
molecular weight remains constant with changing absorbance 
(concentration), a single ideal species is indicated. If the molecular 
weight decreases with increasing absorbance, this indicates 
thermodynamic nonideality. Finally, if the molecular weight increases 
with increasing concentration, a self-association may be occurring. In 
this last case, if a wide enough concentration range is examined, the 
molecular weight at low concentration will approach that of the 

2.00
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0.00
0.00 0.70 1.40 2.10 2.80
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M
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Figure 4. Diagnostics graph providing a qualitative characterization of the
solution behavior of macromolecules. (Reprinted from Laue, 1992.)
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smallest species in the reaction, and at higher concentrations it will 
approach that of the largest species. If the monomer molecular weight 
has been determined under denaturing conditions, this provides 
estimates of the stoichiometry of these limiting species. As is the case 
for plots of ln(A) vs. r2, association and nonideality have opposing effects. 
So, if both conditions are present, determination of an upper limit for 
oligomerization	is	difficult.	Similar	problems	may	arise	due	to	limited	
solubilities at higher concentrations.

 More information can be obtained from plots of molecular 
weight vs. concentration from a single sample by examining the apparent 
weightaverage molecular weight as a function of increasing radius. One 
method is to use nonlinear regression techniques to calculate parameters 
that allow determination of molecular weight for each radial position 
in the cell, then to graph the molecular weight vs. the corresponding 
absorbance value (Formisano et al., 1978). Another method is to take 
subsets of the data, determine molecular weight from linear regression 
analysis with a plot of ln(A) vs. r2,	and	finally	graph	the	molecular	weight	
against the midpoint absorbance of the subset. Other methods are 
used in some cases to avoid the systematic errors that occur in some 
calculations (Dierckx, 1975). Mw vs. concentration calculations provide 
information similar to that obtained from a single point per sample, but, 
in addition, a diagnostic graph that distinguishes between self-association 
and polydispersity may be obtained (Figure 5).

 For a self-associating system, the apparent weight-average 
molecular weight will increase with increasing concentration, and the 
plots of Mw vs. absorbance will coincide. As with the previous diagnostic 
graphs, the limiting molecular weights will approach that of the monomer 
at the lower concentrations and that of the largest species at the higher 
concentrations. Nonideality will cause a downward trend in the slope and 
will prevent an accurate estimation of the stoichiometry from this plot.

cr 

Mw

cr 

MwA B

Figure 5. Multiple data sets graphed in terms of molecular weight vs. concentration.
a) Self-associating system; b) polydisperse system.
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 In the case of polydispersity, however, the Mw vs. absorbance 
plots will not coincide but will be displaced to the right with increasing 
sample starting concentration. Nonoverlapping weight-average molecular 
weight distributions will be observed for different loading concentrations. 
This observation is due to the fact that the same molecular weight 
distribution is present regardless of sample concentration.

 Polydispersity and reversibility of a self-association reaction can 
be	confirmed	by	graphs	of	apparent	molecular	weight	as	a	function	of	
rotor speed (Figure 6).

 For both homogeneous, noninteracting samples and 
homogeneous, self-associating samples, molecular weight is independent 
of rotor speed as long as all associating species are detectable in the 
concentration gradient. Polydisperse samples, however, display a 
systematic decrease in molecular weight with increasing rotor speed.

 Caution is required due to the opposing effects of association 
and nonideality on concentration dependence of molecular weight. The 
presence of both phenomena can produce apparently ideal behavior. The 
effect of nonideality may not be apparent except in higher concentrations. 
In this case, the molecular weight will appear to decrease with 
increasing concentration. This situation makes estimation of association 
stoichiometry	difficult.	These	diagnostic	plots	should	only	be	considered	
qualitative and not used for numeric determination of any molecular 
weight, association, or nonideality parameters.

Figure 6. Diagnostics graph providing a qualitative characterization of the
solution behavior of macromolecules. (Reprinted from Laue, 1992.)
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NONLINEAR 
LEAST-SQUARES 
ANALYSIS
 Least-squares methods are one way to obtain a statistical 
fit	of	the	experimental	data	to	a	proposed	model	and	to	obtain	best	
estimates for unknown parameters (Johnson, 1992; Johnson and 
Faunt, 1992; Johnson and Frazier, 1985; Johnson et al., 1981). The major 
advantage of these methods is that data can be analyzed directly without 
transformation. Also, more complex models can be tested when obvious 
differences	between	experimental	and	fitted	data	exist.	Computer	
analysis has greatly facilitated these methods. Without the calculating 
power of the computer, only the conventional graphical analyses with 
their inherent assumptions and approximations would be possible. Three 
basic features are needed for simple nonlinear least-squares analysis: 
1) an algorithm for calculating least-squares, 2) a mathematical model 
to describe the system, and 3) statistical analysis to measure goodness 
of	fit	of	a	proposed	fitted	model	to	the	experimental	data.	A	practical	
approach to data analysis using these methods and the Beckman Optima 
XL-A Data Analysis Package is described in Appendix A.

LEAST-SQUARES METHODS
 In this analysis, a series of curves is calculated to locate a “best” 
fitting	model	of	the	data.	Each	iteration	leads	to	a	better	approximation	
of the curve parameters until the approximations converge to stable 
values for the parameters being varied. For least-squares analysis, the 
differences	between	the	fitted	function	and	the	experimental	data	are	
squared and summed, and the parameters varied so as to minimize this 
sum. Ideally, the reduction continues until a global minimum is reached. 
Minimization of least-squares does not always provide the correct set of 
model parameters. Therefore, additional statistical and graphical analysis 
is	usually	needed	in	addition	to	curve	fitting	techniques.

 The graphs in Figure 7 show the sum of squares minima in 
relation to two parameters.
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 The values for the two parameters are on the x- and y-axis, 
respectively, and for the sum of squares on the z-axis. In Figure 7a the 
error	space	is	well	defined	for	both	parameters,	and	the	algorithm	would	
be able to calculate them to a high precision. Figure 7b, however, shows 
an	example	where	the	parameter	plotted	on	the	y-axis	is	well	defined,	
but the parameter plotted on the x-axis is not. In this case, the algorithm 
would be able to calculate the y parameter to a high precision, but would 
have	more	difficulty	calculating	the	x	parameter	to	the	same	precision.	
In	some	cases,	the	error	space	can	be	flat	or	contain	several	minima	that	
may yield different answers depending on starting guesses.

 Many numerical algorithms are available for determining 
parameters by least-squares and are too numerous to be listed here. 
The Marquardt method (1963) is the most commonly used. It combines 
the advantages of two other methods, Gauss-Newton and Steepest 
Descent (Bevington, 1992), to obtain a more robust convergence. The 
Nelder-Mead algorithm (1965), also known as the Simplex method, is a 
geometric, rather than a numeric, procedure. The XL-A Data Analysis 
Package	has	incorporated	a	modification	of	the	Gauss-Newton	method	
developed by Johnson et al. (1981)	in	the	multifit	program	analyzing	
multiple data sets simultaneously. Also accessible is the Marquardt 
algorithm	for	single	data	file	analysis.

  

A B

Figure 7. Error surface graphs showing the sum of squares graphed on
z-axis. Two variables are shown on the x- and y-axes. a) Well-defined minimum;
b) well-defined for y but not x.
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MATHEMATICAL MODELS
Single ideal species
 When a method of least-squares analysis is used, a mathematical 
equation, or model, describing the distribution of the macrosolute in 
the	cell	is	needed	for	the	fitting	procedure.	The	initial	model	chosen	
can be one that seems best to describe the system as discerned from 
the	diagnostic	plots	described	earlier.	From	goodness	of	fit	analyses,	
alternative	models	are	then	analyzed	to	find	the	best	description	of	the	
experimental data.

 As described previously, the Lamm partial differential equation 
describes	all	movement	of	molecules	in	a	centrifugal	field.	At	equilibrium,	
no apparent movement of solute occurs due to the equalization of 
sedimentation and diffusion. From this observation, an exponential 
solution to the Lamm equation can be derived (Equation 2). This 
equation, with cr and radius as the dependent and independent variables, 
respectively, is directly related to the data as it is obtained from the 
analytical ultracentrifuge.

where cr  = concentration at radius r
cr0

 = concentration of the monomer at the reference radius r0
ω = angular velocity
R = gas constant (8.314 × 107 erg/mol·K)
T = temperature in Kelvin
M = monomer molecular weight
v̄	 =	partial	specific	volume	of	the	solute
ρ = density of solvent.

	 Ultracentrifuge	data	can	be	fitted	to	this	equation	using	optical	
absorbance in place of concentration, provided the sample obeys the 
Beer-Lambert Law across the full range of absorbance. Final results are 
usually converted back to concentration.

 Equation 2 describes distribution of a single ideal species at 
equilibrium. Fitting the data to this model using nonlinear regression 
analysis yields an apparent weight-average molecular weight for all solutes 
in the cell when the baseline offset is constrained to zero. Including 
the baseline offset will result in determination of a z-average molecular 
weight. Recalling from Figure 2 that these average molecular weights 
are expressed in terms of concentration, the molecular weights are not 
well	defined	averages	if	the	extinction	coefficients	are	not	known	for	all	
components because the data used are absorbance values.  

cr = cr0 e[ ω2
2RT M(1−vρ)(r2 −r02 )]Equation 2
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 Baseline offset results from a difference in the absorbance 
between the reference and the solvent in which the sample is dissolved. 
Usually, extensive dialysis procedures are used to minimize the difference. 
If, however, a difference remains, the baseline term must be included in 
the	mathematical	model.	With	sufficient	data,	the	baseline	can	be	varied	
as an additional parameter, but the calculated values of other parameters 
such as molecular weight are affected greatly by the baseline value. The 
baseline value can be determined experimentally by a high-speed run 
where the meniscus is depleted of all sample and the absorbance read 
directly from the data near the meniscus. The experimental approach is 
limiting when the meniscus cannot be depleted.

Self-association
 The model equation for a self-associating system is similar to that 
of a single ideal species except that the total absorbance at a given radius 
is the sum of absorbances of all species at that radius. Each term of the 
summation will be a distribution function similar to that for a single ideal 
species. Take, for example, the simple equilibrium:

monomer     n-mer

 At equilibrium, the total absorbance as measured in 
the analytical ultracentrifuge can be shown as the sum of two 
species (Figure 8).
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 The equation that describes the total macrosolute distribution 
for this monomer–n-mer equilibrium is as follows:

 Each exponential in the summation describes the equilibrium 
distribution	of	an	individual	species	in	the	equilibrium,	the	first	being	
the monomer and the second the n-mer. The stoichiometry is set in the 
model by an integer value for n, such that the n-mer molecular weight is n 
times the monomer molecular weight, M.

 For the monomer–n-mer equilibrium reaction, the association 
constant is:

 Substituting into equation 3, gives a new model to solve directly 
for Ka without the cn-mer term:

 Rearranging the equation constrains the cmonomer,r0 and Ka terms 
to positive numbers: 

 Similar models for more than two species in equilibrium can be 
derived by using the same method of describing the total concentration 
as the summation of all species present. Usually, not more than three 
species can be distinguished by analytical ultracentrifugation data 
However, a model is included in the data analysis software that describes 
the equilibrium distribution of up to four ideal species (equation 7):

    

ctotal = cmonomer, r0
e[

ω2

2RT
M(1−v ρ)(r2 −r0

2 )]

+ cn−mer,r0
e[

ω2

2RT
nM(1−v ρ)(r2 −r0

2 )]
Equation 3

Ka = cn-mer/(cmonomer)nEquation 4

  

ctotal = cmonomer,r0
e[

ω 2

2RT
M(1−v ρ)(r2 −r0

2 )]

 +  Ka (cmonomer,r0
)n e[

ω 2

2RT
nM(1−v ρ)(r2 −r0

2 )]
Equation 5

    

ctotal,r = e
[ln(c monomer,r0

)+
ω 2

2RT
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+ e
{n[ln(cmonomer,r0
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ω 2

2RT
nM(1−v ρ)(r 2 −r 0

2 )}
Equation 6
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where cr = concentration at radius r
cmonomer,r0 = concentration of the monomer at the reference 
 radius r0
M = monomer molecular weight
n2 = stoichiometry for species 2
Ka,2 = association constant for the monomer–n-mer 
 equilibrium of species 2
n3 = stoichiometry for species 3
Ka,3 = association constant for the monomer–n-mer 
 equilibrium of species 3
n4 = stoichiometry for species 4
Ka,4 = association constant for the monomer–n-mer 
 equilibrium of species 4
E = baseline offset

 Rearranging as before to constrain cmonomer,r0 and Ka values:

    

cr = cmonomer,r0
e
[(1−v ρ)ω 2

2RT
M(r2 −r0

2 )]
+ (cmonomer,r0

)n2 Ka,2e[(1−v ρ)ω 2

2RT
n2M(r2 −r0

2 )]
+ (cmonomer,r0

)n3 Ka,3e[(1−v ρ)ω 2

2RT
n 3M(r2 −r0

2 )]
+ (cmonomer,r0

)n4 Ka,4e[(1−v ρ)ω 2

2RT
n 4M(r2 −r0

2 )]+ E

Equation 8

    

cr = cmonomer,r0
e
[(1−v ρ)ω 2

2RT
M(r2 −r0

2 )]
+ (cmonomer,r0

)n2 Ka,2e[(1−v ρ)ω 2

2RT
n2M(r2 −r0

2 )]
+ (cmonomer,r0

)n3 Ka,3e[(1−v ρ)ω 2

2RT
n 3M(r2 −r0

2 )]
+ (cmonomer,r0

)n4 Ka,4e[(1−v ρ)ω 2

2RT
n 4M(r2 −r0

2 )]+ E

Equation 7
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 The stoichiometries n2-n4	are	defined	by	the	user,	and	the	
respective association constants are for the monomer–n-mer equilibrium 
of each aggregate. Association constants for n-mer–n-mer equilibria 
can be calculated from respective monomer–n-mer constants, but 
these	mechanisms	of	reaction	cannot	be	confirmed	from	equilibrium	
concentration data. For example, with a monomer-dimer-trimer 
equilibrium, the model (equation 8) will calculate the association 
constants for the monomer-dimer and monomer-trimer equilibria.  
If there is evidence that a dimer-trimer equilibrium is present, it  
can be calculated:

 Usually, association constants are expressed in terms of 
concentration. Since data from the analytical ultracentrifuge are in 
absorbance units, some assumptions are usually made in the calculation of 
these	constants.	The	extinction	coefficient	for	an	n-mer in the 
monomer–n-mer equilibrium is assumed to be n times that of the 
monomer. So, if an association constant is calculated in terms of the 
absorbance data, conversion to one based on concentration must include 
this assumption (Becerra et al., 1991; Ross et al., 1991). Equation 10 shows 
this	conversion	if	the	extinction	coefficient	of	the	monomer	is	known:

 Similarly, for a monomer-trimer system the conversion is:

Nonideality
 Nonideal behavior of an associating system resulting from charge 
or crowding can be incorporated into the model (equation 12). The 
nonideality	is	described	by	the	second	virial	coefficient,	B (Haschmeyer 
and Bowers, 1970; Holladay and Sophianopolis, 1972, 1974).

K1-2,conc = c2/c1
2 = K1-2,absεl/2;

Beer-Lambert Law: A = εcl or c = A/εlEquation 10

K1-3,conc = c3/c1
3 = K1-3,absε2l2/3Equation 11

cr,total = e
[ln(cmonomer,r0

)+
(1−vρ)ω 2

2RT
M(r2 −r0

2 )−BM(ctotal,r −ctotal,r0
)]

+e
[ln(cmonomer,r0

)+ln(Ka,2 )+
(1−vρ)ω 2

2RT
n2M(r2 −r0

2 )−BM(ctotal,r −ctotal,r0
)]

+e
[ln(cmonomer,r0

)+ln(Ka, 3)+
(1−vρ)ω 2

2RT
n3M(r2 −r0

2 )−BM(ctotal,r −ctotal,r0
)]

+e
[ln(cmonomer,r0

)+ln(Ka,4)+
(1−vρ)ω 2

2RT
n4M(r2 −r0

2 )−BM(ctotal,r −ctotal,r0
)]

+ E

Equation 12

K1-2 = cdimer/(cmonomer)2, K1-3 = ctrimer/(cmonomer)3

so K2-3 = ctrimer/cmonomer • cdimer = K1-3/K1-2Equation 9B

Equation 9A
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	 This	model	can	also	be	used	for	fitting	all	previously	described	
equilibria with appropriate constraints. For example, setting the virial 
coefficient	value	to	zero	effectively	removes	all	nonideality	terms,	and	the	
model is the same as that described for an ideal self-associating system. 
Also, constraining any of the association constant values to an extremely 
small number, e.g., 1 × 10-20, effectively removes the exponent term 
describing the distribution of the corresponding n-mer. This constraint 
can make the same model usable for one to four species in the cell.

Fitting data to a model
 Once a model has been chosen along with the algorithm for 
analysis,	the	user	is	ready	to	begin	the	fitting	procedure.	The	basis	
for	fitting	is	to	set	initial	guesses	for	all	parameters	in	the	model	and	
either	to	constrain	these	to	the	set	value	or	to	allow	them	to	float	in	
the least-squares calculation. The constrain/vary choice will be dictated 
by experimental conditions and the thermodynamic parameters to 
be determined. Certain parameters are determined by experimental 
conditions	and	must	be	provided	prior	to	the	fitting	procedure.	These	
include angular velocity (ω2) determined from the rotor speed, 
temperature, and characteristics of the solute and solvent ( v̄ and ρ). A 
reference	radius	will	also	be	chosen	for	the	fitting	procedure.	In	all	cases,	
the absorbance or concentration at this reference radius will be allowed 
to	float	in	the	calculations.	All	other	parameters	are	chosen	by	the	user.

 The amount of data will be the factor limiting the complexity 
of the models that can be distinguished statistically. For example, with 
a	single	data	set,	floating	variables	should	be	limited	to	two.	Even	then,	
confidence	in	answers	obtained	is	not	always	good	enough.	So,	as	a	
general rule, multiple data sets with varying conditions (usually speed and 
starting sample concentration) should be used. In this case, an algorithm is 
needed	that	can	fit	to	the	multiple	data	sets	simultaneously.

 The stoichiometries n2-n4	are	defined	by	the	user,	and	the	
respective association constants are for the monomer–n-mer equilibrium 
of each aggregate. Association constants for n-mer–n-mer equilibria 
can be calculated from respective monomer–n-mer constants, but 
these	mechanisms	of	reaction	cannot	be	confirmed	from	equilibrium	
concentration data. For example, with a monomer-dimer-trimer 
equilibrium, the model (equation 8) will calculate the association 
constants for the monomer-dimer and monomer-trimer equilibria.  
If there is evidence that a dimer-trimer equilibrium is present, it  
can be calculated:

 Usually, association constants are expressed in terms of 
concentration. Since data from the analytical ultracentrifuge are in 
absorbance units, some assumptions are usually made in the calculation of 
these	constants.	The	extinction	coefficient	for	an	n-mer in the 
monomer–n-mer equilibrium is assumed to be n times that of the 
monomer. So, if an association constant is calculated in terms of the 
absorbance data, conversion to one based on concentration must include 
this assumption (Becerra et al., 1991; Ross et al., 1991). Equation 10 shows 
this	conversion	if	the	extinction	coefficient	of	the	monomer	is	known:

 Similarly, for a monomer-trimer system the conversion is:

Nonideality
 Nonideal behavior of an associating system resulting from charge 
or crowding can be incorporated into the model (equation 12). The 
nonideality	is	described	by	the	second	virial	coefficient,	B (Haschmeyer 
and Bowers, 1970; Holladay and Sophianopolis, 1972, 1974).

K1-2,conc = c2/c1
2 = K1-2,absεl/2;

Beer-Lambert Law: A = εcl or c = A/εlEquation 10

K1-3,conc = c3/c1
3 = K1-3,absε2l2/3Equation 11

cr,total = e
[ln(cmonomer,r0

)+
(1−vρ)ω 2

2RT
M(r2 −r0
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)]

+e
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(1−vρ)ω 2

2RT
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+e
[ln(cmonomer,r0
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2RT
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2 )−BM(ctotal,r −ctotal,r0
)]

+ E

Equation 12
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	 Analysis	of	multiple	files	separately	can	also	be	used	to	check	the
reversibility of an associating system. If the same association constant is
obtained from runs at multiple speeds and starting concentrations, the 
association is reversible.

Confidence intervals
	 Confidence	intervals	are	a	measure	of	the	precision	of	
individual parameters based on a single set of data. However, the 
interval determined for a parameter can also serve as a measure of 
the accuracy of the estimated parameter (Johnson and Faunt, 1992). A 
number	of	methods	of	varying	complexity	exist	to	evaluate	confidence	
intervals and, thus, the validity of the approximation (Johnson and 
Faunt,	1992;	Straume	and	Johnson,	1992b).	Confidence	intervals	in	most	
cases are not symmetrical, so the magnitudes of the two intervals from 
a determined parameter are not always equivalent. This asymmetry 
makes these intervals more realistic than symmetrical standard deviation 
determinations	or	linear	approximations	of	confidence	intervals	that	are	
symmetrical around the determined parameter.

Contour maps
	 Contours	are	a	method	of	profiling	a	three-dimensional	surface	
in a twodimensional format. In this way, the user can visualize the sum 
of squares error space in relation to two parameters (Bates and Watts, 
1988; Johnson and Faunt, 1992). Using the error surface maps illustrated 
in	the	leastsquares	section,	one	can	calculate	confidence	intervals	
corresponding to the magnitude of the sum of squares on the z-axis. 
Planes drawn parallel to the x-y axes at increasing magnitudes along the 
z-axis will intersect the error surface. When viewed down the z-axis, the 
intercepts will appear as concentric contours. The contours will show 
graphically	the	magnitude	of	the	confidence	intervals	on	the	x- and y-axes 
in relation to the minimum of the sum of squares.

 Several methods exist for estimating the contours. The actual 
contours for nonlinear regression are asymmetrical, but to save computer 
time, in many cases, linear or symmetric approximations are used to 
calculate elliptical estimations (Figure 9).
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 The spacing and shape of the contours can indicate how 
well	the	two	parameters	being	examined	are	defined	by	the	error	
space. Closer and less elongated (rounder) contours indicate better 
defined	parameters.

Figure 9. Actual contour maps (          ) in relation to linear approximations
(- - -) to demonstrate differences in confidence intervals; + represents the
least-squares estimate. (Redrawn from Bates and Watts, 1988, with permission
of John Wiley & Sons, Inc.)
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GOODNESS OF FIT
	 The	first	fitting	attempt	for	any	experiment	is	usually	to	the	
single ideal species model. The Mw and Mz determined will give the 
first	indication	of	possible	inappropriateness	of	the	model	for	the	
experimental data. If these molecular weight averages are not equivalent, 
multiple species are indicated. If a monomer molecular weight is known 
from previous experiments, Mw	will	provide	the	first	indication	of	the	
stoichiometry of an associating system. But, as mentioned previously, 
nonideality will have opposite effects on the analysis, and this fact should 
be considered in interpretation of results.

RESIDUALS
 The most sensitive graphical representation for goodness of 
fit,	and	the	best	indicator	of	possible	alternative	models,	is	the	residual	
plot. Residuals are the difference between each experimental data point 
and the corresponding point on the curve calculated from the model 
equation.	Figure	10	shows	an	example	of	the	desired	residuals	with	a	fit	
from a plausible model.

 A random distribution of points about the zero value is a desired 
diagnostic	for	a	good	fit.	Also	shown	are	typical	patterns	of	systematic	
errors characteristic of associating and nonideal systems. Thus, the 
patterns	of	residual	plots	can	suggest	additional	models	for	fitting.	
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Figure 10. Residuals from desired fit. a) Good fit; b) aggregation; c) nonideality.
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CHI SQUARE
 Several mathematical analyses are used for determining 
goodness	of	fit	(Straume	and	Johnson,	1992a).	Of	these,	the	χ2 test is 
probably the most common. Once it is clear that there are no systematic 
trends in the residual plot, the χ2 test provides a quantitative measure for 
the	goodness	of	fit	of	a	particular	model.	The	χ2	statistic	is	defined	as:

over	the	defined	confidence	interval	or	the	sum	over	all	data	points	of	
the residuals squared, normalized to the error estimate for each point. 
The standard error is used in weighting the individual data points. By 
dividing this weighted χ2 value by the number of degrees of freedom, 
the reduced χ2 value, or variance, is obtained. The number of degrees 
of	freedom	is	defined	as	n - n ́	-	1,	where	n	is	the	number	of	data	points	
and n ́	is	the	number	of	parameters	being	determined	in	the	analysis.	The	
value of the reduced χ2 should approach one if the mathematical model 
accurately describes the data.

PARAMETER CORRELATION
 Correlation of unknown parameters is another important 
diagnostic. Statistically, the dependence of one parameter on another can 
be	calculated	in	a	correlation	coefficient.	Calculation	of	these	coefficients	
with	multiple	fitting	parameters	involves	use	of	covariance	matrices	to	
obtain	the	final	correlation	matrix	with	correlations	between	each	pair	
of parameters (Bard, 1974; Bates and Watts, 1988). This calculation can 
be complicated and requires use of a computer. Absolute correlation 
between	variables	results	in	a	correlation	coefficient	of	±	1.00.	No	
correlation results in a value of 0.00. In nonlinear regression techniques, 
correlation	coefficients	can	be	determined	between	all	parameters.	
Ideally,	these	coefficients	should	be	low	enough	to	show	little	or	no	
correlation,	and	the	user	must	decide	according	to	the	model	being	fitted	
how	much	correlation	is	acceptable.	As	a	general	rule,	no	coefficient	
having an absolute value greater than 0.95 would be acceptable. The 
accuracy of values for highly correlated parameters is greatly reduced.

 The parameters most likely to show the highest correlation 
in a selfassociating system are the association constants. Constraining 
the value of one or more of the correlated parameters, while 
ensuring	goodness	of	fit	to	the	proposed	model,	can	help	reduce	the	
coefficient	values.

χ 2 =
(observed residual -  expected residual)i

2

expected residuali
i

∑Equation 13
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SUMMARY
 Data analysis is the most important aspect of characterizing a 
self-associating	system	using	the	analytical	ultracentrifuge.	The	first	level	of	
analysis is a qualitative one using diagnostic graphs. At this level questions 
are addressed about homogeneity, nonideality, and whether or not an 
association reaction is occurring. Also, the reversibility of an association 
and an estimate of monomer molecular weight can be determined. 
The next level of analysis involves nonlinear regression analysis for a 
quantitative determination of monomer molecular weight, association 
constants,	stoichiometries,	and	nonideality	coefficients.	At	this	level,	the	
most	accurate	information	can	be	obtained	using	fitting	procedures	with	
multiple data sets varying both speed and starting concentration. It is 
necessary to test a number of possible model equations describing the 
associating	system	to	find	the	model	that	best	describes	the	equilibrium.	
In many cases, varying constrained parameters will accomplish this task. 
Finally,	goodness-of-fit	graphics	and	statistics	help	to	distinguish	the	
model	that	best	describes	the	system.	If	a	significant	statistical	difference	
between models cannot be established, the simplest model should be 
used to describe the system until more data are obtained.
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APPENDIX A: 
A RATIONAL APPROACH 
TO MODELING SELF-
ASSOCIATING SYSTEMS 
IN THE ANALYTICAL 
ULTRACENTRIFUGE
 This section is intended to provide a rational approach to 
modeling sedimentation equilibrium data for determining stoichiometry, 
association constants, and in certain situations, the degree of nonideality 
of reversible self-associating systems.

1. WHAT QUESTIONS NEED TO BE ANSWERED?
 Before trying to analyze any data, and before running any 
equilibrium experiments, one should have a clear idea of the questions to 
be asked about a particular system. This helps to design the experiment 
with respect to the question. If, for example, very little is known about 
the system, the experiments should be exploratory in nature and answer 
more	qualitative	questions.	The	first	step	might	be	to	estimate	sample	
purity, or the extent of associative behavior, i.e., is the interaction weak, 
moderate, or strong. As more is known about the system, 
follow-up	experiments	can	be	tailored	to	answer	more	specific	
quantitative questions.

 Having a sense of which questions are pertinent can also 
determine how much time needs to be spent on a system. It may not 
always be necessary to understand to the last decimal point everything 
about a system.

2. DON’T VARY EVERYTHING AT ONCE
	 The	self-association	fitting	equation,	provided	as	part	of	the	
XL-A Data Analysis Package, can be used to model up to four interacting 
species. The values of interest usually include one or more of the 
following: the molecular weight of the monomer, the stoichiometry of the 
system, and the association constants. These properties are expressed as 
parameters in a model equation. These parameters are determined by 
solving	the	appropriate	equation,	identified	by	the	best-fit	curve	through	
the	data,	using	a	nonlinear	curve	fitting	algorithm.	A	series	of	iterative	
guesses are made for each parameter to minimize the least-squares 
response between calculated and experimental data sets. Since these 
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parameters	are	often	unknown,	the	first	impulse	in	solving	for	each	of	
them is to simultaneously vary all the parameters in the model and let the 
fitting	routine	sort	out	the	numbers.

 Although tempting, this approach can lead to problems on 
two	fronts:	1)	the	program	may	have	difficulty	converging	since	the	 
error	space	may	appear	flat,	or	2)	if	a	fit	is	attained,	the	accuracy	of	 
the results may be suspect. With respect to accuracy, the algorithm  
may have converged on a local rather than a global least-squares 
minimum, or the large number of varied parameters may have  
resulted	in	fitted	values	that	are	highly	correlated	with	each	other	 
and, therefore, statistically questionable.

3. DETERMINE M AND n
	 As	a	rule,	the	number	of	parameters	allowed	to	vary	during	a	fit	
should be kept to a minimum. This often requires advance knowledge of 
the values of some parameters. One of the most important parameters 
to determine is the monomer molecular weight, M. This value can either 
be calculated from the formula molecular weight or determined by 
complementary techniques, or it can be determined through the use of 
the analytical ultracentrifuge. The analytical ultracentrifuge can be used 
to determine M by running the sample under denaturing conditions 
and	fitting	directly	to	the	molecular	weight	parameter.	[A	lower-than-
expected estimate of M can mean that a baseline offset, E, needs to 
be	included	in	the	fit	(see	next	section).]	Alternatively,	the	equilibrium	
gradient can be transformed to a Mw vs. concentration plot and the 
curve extrapolated to the ordinate in order to obtain an estimate of M 
(see Figure 11). Reading the curve in the other direction (to the highest 
gradient concentration) and dividing the molecular weight at this point 
by M affords a measure of the highest associative order, n, of the system, 
assuming a high enough loading concentration has been used. (Samples 
are normally run at multiple concentrations and speeds.) It should be 
cautioned that this technique provides only a rough estimate of n, and 
that the value obtained is not above suspicion. An estimate of n that is 
lower than expected can result from the molecular weight at the highest 
gradient concentration being depressed by nonideality effects or high-
molecular weight aggregates that have pelleted. Or, an estimate that is
higher than expected can result from M being depressed by a baseline 
offset, E (see next section). An important consequence of estimating n is 
that	it	provides	the	information	necessary	to	narrow	the	field	down	to	a	
couple of potential associative models. For example, an estimate of n   3.6 
may suggest a monomer-dimer-tetramer or higher order of association 
that isn’t fully assembled. This information also allows one to dismiss 
irrelevant	models;	for	example,	fits	to	monomer-dimers	or	monomer-
trimers would be inappropriate at this point.
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 The stoichiometry of a system can also be determined using 
a	technique	known	as	a	species	analysis.	This	technique	involves	first	
expressing each species in the model in terms of absorbances. The 
algorithm then converges directly on each of the absorbance terms for a 
series of preselected models, e.g., monomer-dimer, monomer-tetramer, 
etc., or one extended model, e.g., monomer-dimer-tetramer-octamer. In 
this manner, a variety of potential models can be quickly evaluated and 
dismissed in terms of physical reality. For example, a suspected association 
state that converges to a large negative absorbance can probably be ruled 
out. (A large negative absorbance usually means a value several orders 
of magnitude larger than the baseline offset; see next section.) Following 
this	initial	prescreening,	a	more	refined	model	containing	association	
constants can be used for estimating more substantive values.

4. BASELINE CONSIDERATIONS
 The baseline offset, E, is included in a model when a correction 
term is needed to account for the presence of any absorbing particulates 
left undistributed in the gradient. Left uncorrected, E can lead to a low 
estimate for Mw,app	when	fitting	to	a	single	ideal	species	model,	or	a	high	
estimate for n when reading an Mw vs. concentration plot; in the latter 
case, E has a stronger negative effect on M at the lower end of the 
gradient. Since even small values of E, such as 10-2, can play an adverse 
role	if	left	uncorrected	in	a	fit,	it	is	important	to	test	for	its	presence.	E 
can be measured by overspeeding a run and reading the absorbance of 
the trailing gradient (the meniscus-depletion method).
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5. SINGLE DATA FILES, THEN MULTIPLE DATA FILES
	 When	dealing	with	a	variety	of	files	collected	at	multiple	
concentrations and speeds, it is often useful to begin by analyzing 
single	data	files.	This	affords	the	opportunity	to	inspect	each	data	file	
individually,	and	either	to	accept,	edit,	or	reject	individual	files	before	they	
can	adversely	impact	a	multiple	fit	with	other	data	files.	After	examining	
individual	files,	it	is	helpful	to	begin	the	analysis	of	multiple	data	files	
by	first	grouping	the	data	sets	by	speeds	and	channels	(if	multichannel	
centerpieces were used), before attempting to incorporate all of the data 
files	in	a	fit.	Files	should	be	rejected	only	if	there	are	obvious	problems.	
By	grouping	files	in	terms	of	speeds	and	channels,	future	concerns	over	
certain	fit	parameters	can	either	be	avoided	or	rationalized	by	revealing	
them at their source, e.g., a baseline offset inconsistent with trends 
observed	in	other	files,	or	a	window	scratch	at	a	certain	location.

	 Grouping	files	of	different	concentration	has	the	advantage	of	
incorporating	individual	files	that	collectively	span	the	associative	range	
of	the	system,	which	can	facilitate	the	identification	of	the	correct	model.	
Grouping	files	in	terms	of	concentration	and/or	speed	can	also	be	used	
as a diagnostic to evaluate the homogeneity and reversibility of a system 
(see section 11).

 Certain parameters contained in a model are treated differently 
depending	on	whether	single	or	multiple	data	files	are	employed.	When	
fitting	single	data	files,	it	is	important	to	constrain	E to a known value as
measured by the meniscus depletion method. Problems can arise if E is
allowed to vary without knowing its value. The reason for this is that E is
highly correlated with other parameters, and the accuracy of each of 
these	values	can	be	compromised	for	the	sake	of	a	fit.	If	the	value	for	E is 
unknown,	it	is	better	to	leave	it	at	0.	When	fitting	multiple	data	files,	the
opposite is the case; the baseline term should be allowed to vary. Since
multiple runs are usually made at multiple speeds and concentrations, it is
reasonable to assume that the baseline term will be different for different
concentrations. However, the same sample should have the same value of
E regardless of speed. By allowing the baseline offset to vary, its value is
adjusted	with	respect	to	the	conditions	of	each	file,	and	the	accuracy	
of	the	fit	is	enhanced.	When	allowed	to	vary,	E is usually given an initial 
guess of 0; it converges reasonably close to each of its measured values.

	 There	also	exists	some	commonality	between	the	two	fitting	
routines. The absorbance at the reference radius, A0, is treated the  
same	way	for	fits	to	either	single	or	multiple	data	files;	it	should	be	
allowed to vary.
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 Analysis of ideal models for Mw,app can be done using either single 
or	multiple	data	files.	Analysis	of	more	complicated	models	that	involve	
additional varying parameters, such as E and K

a
, should be evaluated using 

multiple	data	files.	Multiple	data	files	have	the	advantage	of	introducing	
more	data	points	to	a	fit.	Also,	a	global	least-squares	minimum	often	can	
be easier to reach.

6. START WITH THE SIMPLE MODEL FIRST
	 It	is	always	a	good	idea	to	start	with	the	simplest	case	first:	the	
single ideal species model. In addition to providing an apparent weight-
average molecular weight, Mw,app,	the	residuals	of	the	fit	can	substantiate	
or refute any preconceived notions about the behavior of the system  
(see Figure 10).

7. MODEL IN STEPS
 One approach to modeling an associating system using multiple 
data		files	is	to	converge	on	the	parameters	in	a	series	of	iterative	steps.	
This approach can help overcome problems the algorithm may have in 
converging on too many parameters. Ideally the monomer molecular 
weight and associative order of the system are known and constrained 
to their appropriate values. If these values are unknown, determining the 
correct	model	can	be	very	difficult.

 As	mentioned	earlier,	files	can	be	grouped	in	terms	of	speeds	
and/or concentration. This grouping becomes useful for diagnosing the 
associating system as well (see section 11).

 In	the	first	step,	the	absorbance	at	the	reference	radius	and	
the appropriate association constant are allowed to vary. To ensure 
that the algorithm is moving down the error space, parameter guesses 
are	given	realistic	values.	Values	for	parameters	obtained	from	the	first	
fit	are	used	as	guesses	for	the	next	fit	when	an	additional	parameter	
is allowed to vary, e.g., the baseline offset. For situations where the 
baseline	terms	are	known,	the	fitted	parameters	can	be	validated.	If	
there	is	close	agreement,	this	can	lend	additional	confidence	to	the	other	
fitted	parameters.	Alternatively,	the	first	convergence	step	may	include	
the baseline term, with the second step incorporating the association 
constant. There is no single approved method for analyzing all  
associating systems. Each system has its own peculiarities.

8. CHECK FOR PHYSICAL REALITY
	 Although	a	fit	can	be	evaluated	using	a	variety	of	sophisticated	
statistics, one of the easiest and most often overlooked methods is 
simply	to	check	the	fitted	parameters	in	terms	of	physical	reality.	Is	the	
molecular weight or association constant consistent with expectations; is 
A0 consistent with the observed gradient; and is the baseline term close 
to zero or the experimentally measured value?
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9. PROBLEMS IN FITTING
	 Sometimes	getting	a	fit	to	converge	can	be	particularly	difficult.	
Assuming the number of parameters allowed to vary has been kept to a 
minimum, the problem may lie in the initial guesses. If the initial guesses 
are	too	unrealistic,	the	algorithm	can	have	trouble	getting	off	the	flat	
part of the error space. If the association constant is suspected to be at 
fault, there are ways of improving a guess. By knowing the weight-average 
molecular	weight	(estimated	from	a	single	ideal	species	fit)	and	dividing	
by the monomer molecular weight, the extent of association may be 
more closely approximated. If, for example, this ratio comes out low with 
respect to the known stoichiometry, this can indicate a weak association, 
and a lower estimate of the association constant may prove a better initial 
guess. (An initial guess of 10-1 or 10-2 for Ka is usually used as a default.)

	 In	general,	problems	in	fitting	may	occur	with	gradients	
that are either too shallow or too steep, resulting from extremes in 
molecular	weight	and/or	run	speed.	This	is	because	the	algorithm	fits	
to an exponential equation and assumes that the gradient follows an 
exponential	profile	over	the	entire	solution	column	height,	which	may 
not always be the case.

	 There	may	be	problems	in	fitting	to	a	model	if	the	monomer	
is present in minute amounts. Since the models are written in terms of 
monomer concentration, a measurable amount of monomer must be 
present	to	avoid	an	ambiguous	fit.	The	fit	may	be	improved	by	expressing	
the model in terms of the predominant species present in the system. 
In cases where the monomer has assembled irreversibly to a dimer, 
for	instance,	the	stoichiometry	of	the	system	may	be	misidentified	as	
monomer-dimer. It may actually be a dimer-tetramer system in which the 
dimer is the lowest molecular weight species present. A run made under 
dissociating conditions using guanidine hydrochloride, for example, may 
prevent this type of error.

 Another condition that can be problematic occurs when the 
time	allowed	for	a	fit	is	insufficient.	The	number	of	loops	(iterations)	the	
algorithm	goes	through	before	quitting	is	100.	Sometimes	by	refitting	the	
same guesses for a second set of iterations or increasing the number of 
iteration	loops,	a	fit	will	converge.	

 Even with the best of intentions and an ideal set of conditions, 
the association may be too complicated to analyze. These models are 
ideally suited for discrete associations, involving up to three species 
(although we allow the capability of modeling up to four species). Trying 
to	model	to	an	indefinite	system	of	more	than	five	species,	containing	
intermediate irreversible associations, can be too much for this approach. 
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If this turns out to be the case, at least the equilibria have been revealed 
to be highly complex, which is probably more than was known about the 
system before the analysis.

10. MODEL TO SYNTHETIC DATA
 Using software programs that simulate a variety of ideal 
associative systems can be an invaluable aid to modeling. As well as 
providing	examples	of	fits	to	simple	ideal	systems,	a	simulation	program	
can	also	serve	as	a	platform	for	confirming	actual	fits	encountered	in	
more complicated multicomponent systems. An equilibrium simulation 
program is included as part of the XL-A Data Analysis Package; simeq.exe 
is located on the XL-A Program Disk.

11. THE MODEL AS A DIAGNOSTIC TOOL
 The advantage of using a model as a diagnostic tool is the variety 
of information that can be revealed about the homogeneity and ideality 
of the system. For example, a single ideal species should yield the same 
Mw,app regardless of initial concentration or speed (see Figures 4 and 6). 
However, as more complicated systems are studied, diagnosing their 
behavior may not always be as simple. The following demonstrates some 
diagnostic manipulations that can be used in evaluating sample behavior 
under	optimum	conditions.	This	material	is	also	presented	as	a	flow	 
chart in Section 13. Included as an addendum are some examples of  
how diagnosing a system under more realistic conditions can be  
more challenging.

Optimum Diagnostic Conditions:
1. Evaluating an ideal associating system.

 An ideal associating system should yield either a constant or 
increasing Mw,app with increasing initial concentrations, as read from a Mw 
vs. concentration plot of a mass action association (see Figure 4). With 
increasing speeds, the apparent molecular weight and the association 
constant should remain constant. (Note: an increase in Mw,app with 
increasing concentration indicates the system is still assembling.) A Ka 
that is independent of either speed or concentration indicates a reversible 
associating system. Most protein-protein associations studied at low to 
moderate concentrations (<1 mg/mL) behave nearly ideally.

2. Evaluating a heterogeneous noninteracting system.

 Heterogeneous, noninteracting behavior in a single ideal or 
associating system can result from either a competing irreversible 
equilibrium or contamination by aggregates (material present as a 
percentage of a mixture). Aggregates are heterogeneous with respect 
to molecular weight and can often be removed by size exclusion 
chromatography. Irreversible equilibria are heterogeneous with respect 
to Ka and may not fractionate as easily. For either condition, the apparent 
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molecular weight and association constant decrease with both increasing 
speeds  and concentrations (see Figures 4 and 6). The reason for this 
is that the higher order components or aggregates are pelleted and no 
longer contribute to	a	fit.

 For an associating system containing higher order aggregates, the
stoichiometry, n, should converge to a higher value (at a given speed or
concentration) when allowed to vary.
 
3. Evaluating for nonideality.

 As a general rule, there should be a good reason for including 
the nonideality term, B,	in	a	fit.	Casually	including	B in a model to see if a 
fit	is	improved	is	not	the	way	to	approach	this	parameter.	Since	legitimate	
parameter values are typically small (10-3-10-4), indicating a fair amount of 
nonideality, forcing B	into	a	fit	can	corrupt	its	thermodynamic	significance.	
Conditions that can warrant the inclusion of B are: a weight-average 
molecular weight dropping with increasing concentration, or a sample 
suspected to be highly charged or asymmetric. It should be noted that 
systems will begin to exhibit nonideality effects when pushed to higher 
concentrations. For nonideal systems behaving as a single species, B is 
typically given an initial guess of 10-4 and converges to a positive number 
during	a	fit.

 Including B in an associating system can be considerably more 
difficult.	The	easiest	case	is	if	Ka and B are both large, e.g., Ka = 105 M-1 
and B	=	0.01	mL/g	(with	an	approximate	extinction	coefficient	of	1	at	
A280).	It	also	helps	if	the	equilibrium	is	a	finite	one	and	the	final	assembly	is	
complete at relatively low concentrations. This allows any nonideality to
be observed in near isolation at high concentrations. For systems of this
type, both B and Ka may be solved simultaneously.

 For systems where the nonideality term is very weak, B may be 
obscured by the association. For systems of this type, it may be necessary 
to determine each parameter separately. One method that has proved 
successful (Laue et al.,	1984	)	is	to	neglect	nonideality	when	fitting	for	
Ka,	then	to	go	back	with	a	fixed	estimate	of	B	and	compare	the	fits.	For	
situations of this type, values for B are based on the size, shape, and 
estimated charge of the molecules using equations given in Tanford (1961).

Realistic Diagnostic Conditions
 A variety of competing situations may exist that can make 
evaluation	of	sample	behavior	very	difficult.	Below	are	two	scenarios.
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1. Association and nonideality in the same system.

 For a nonideal associating system, the sample may exhibit 
behavior consistent with an ideal noninteracting model. The reason 
is that the increase in apparent molecular weight with increasing 
concentration for an associating system is offset by a decrease in the 
molecular weight for a nonideal system. The net effect may be a constant 
apparent molecular weight with increasing concentration. If this situation 
is suspected, one solution may be to minimize the effect of nonideality. If 
the nonideality is suspected to occur from crowding or excluded volume 
effects, the sample may be run under more dilute conditions. If the 
nonideality is suspected to result from charge effects, the sample may be 
run in a higher ionic strength buffer.

2. Association and heterogeneity in the same system.

 If an ideal associating system contains a competing irreversible 
equilibrium, a condition similar to the above may occur. Since increases in 
speed or concentration have opposite effects on the direction of change 
in	the	apparent	molecular	weight,	it	may	be	difficult	to	identify	any	of	the	
associative states.

12. TEST THE FIT AND THE MODEL
	 Before	accepting	a	fit,	it	is	a	good	idea	to	test	it.	One	technique	
involves	making	guesses	on	either	side	of	a	fitted	parameter	to	determine	
whether the algorithm converges back to the same value. Another 
technique	involves	allowing	all	the	fitted	parameters	in	question	to	vary	
in	a	final	iterative	step	to	see	if	they	all	return	to	their	respective	values.	
(Note: this last technique may not work for parameters that are too 
highly correlated, i.e.,	with	correlation	coefficients	>	0.95.)	If,	after	this	
step,	the	fit	is	still	in	question	(based	on	fit	values,	statistics,	or	residuals),	
an additional term may need to be considered, such as the nonideality 
coefficient,	or	the	presence	of	higher	order	aggregates	that	may	be	
throwing	off	the	fit.	Or	perhaps	the	wrong	model	was	selected.	Nagging	
doubts	about	a	fit	or	a	model	can	often	be	dispelled	by	repeating	a	set	of	
experiments with a fresh preparation.

	 Comparisons	with	other	nonlinear	fitting	routines	may	
yield slightly different values. This can be due to differences in how 
algorithms converge on a least-squares minimum or to rounding 
errors between algorithms.

13. FLOW CHART
	 The	flow	chart	on	page	39	is	provided	as	an	aid	to	adapting	a	
rational approach to modeling. The order of analysis appears on the left 
and follows a vertical stepwise approach. The center columns show the 
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affected	parameters,	while	the	column	to	the	far	right	identifies	the	
associative state being tested.

14. LIMITATIONS
 Modeling is not always straightforward, and there may appear, at 
times,	a	certain	level	of	ambiguity	in	a	fit.	Competing	models	can	appear	
indistinguishable,	and	certain	fit	criteria	can	run	contrary	to	common	
sense. In sedimentation analysis, there are a variety of limitations or 
sources for error that can lead to this uncertainty. While some 
conditions	leading	to	ambiguous	fits	can	be	prevented	through	
careful experimental design, others cannot, e.g., problems inherent 
to an iterative least-squares process.

	 The	most	obvious	condition	affecting	a	fit	concerns	sample	
preparation. There is no substitute for having a clean sample. 
Heterogeneous aggregates present in a sample can wreak havoc during 
modeling.	Purification	through	size	exclusion	chromatography	is	suggested	
as the method of choice (Laue, 1992). Dialysis can be effective if the 
contaminants are very small.

	 Other	conditions	that	can	affect	a	fit	range	from	physical	
aberrations, such as dirty windows, to experimental conditions (e.g., 
inappropriate speed selection), to data collection (e.g., not enough data 
points, averages, or data sets), to algorithm limitations (e.g., convergence 
on a local rather than a global least-squares minimum), to inequities in 
modeling (e.g., improper model selection).

 It is important to emphasize that there are systems too 
complicated for this approach, or any approach. Systems containing 
multiple species, for example, can provide at best only a rough order of 
approximation in their interpretation. This should not be construed as a 
limitation	of	sedimentation	analysis	or	modeling,	but	rather	a	reflection	of	
the level of complexity present in nature.
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APPENDIX B: PARTIAL 
SPECIFIC VOLUME
	 The	partial	specific	volume	(v̄)	is	defined	as	the	change	in	volume	
(in mL) of the solution per gram of added solute. Typically, for proteins, 
an	error	in	this	parameter	is	magnified	threefold	in	calculating	the	
molecular weight, so it is important to obtain accurate values for v̄. An 
extensive	discussion	and	tabulation	of	values	for	partial	specific	volumes	
can be found in a review by Durschlag (1986). Two methods are generally 
used for the experimental measurement of v̄: densitometry or analytical 
ultracentrifugation in solvents with differing isotope composition. 
Densitometry is the most accurate, but requires expensive 
instrumentation and large amounts of solute. Use of solvents containing 
D2O vs. H2O in parallel experiments in the ultracentrifuge allows one to 
solve for v̄ in the equations:

where MH2O and MD2O are the buoyant molecular weights in H2O and 
D2O, respectively, and ρ1 and ρ2 are the densities of the two solvents.

 An alternative method is to estimate v̄ based on the 
sample’s composition. Comparisons with experimentally derived 
values indicate that estimates based on protein amino acid compositions 
are typically good to within 1-2%. Estimates for conjugated proteins, 
with carbohydrate moieties for example, can lead to greater errors.
Hydration of molecules is another source of error that must be 
considered in the calculation.

	 Partial	specific	volume	is	usually	estimated	from	composition	
using the method of Cohn and Edsall (1943):

where v̄c	is	the	calculated	partial	specific	volume,	Wi is the 
weight percent of the ith component, Ni is the number of residues, 
Mi is the molecular weight of the corresponding component (for amino 

  MH2O = M (1 − vρ1)

  MD2O = M (1 − vρ2 )

Equation 14A

Equation 14B
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∑

Equation 15
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acids, the residue molecular weight minus 18) and v̄ i	is	the	partial	specific	
volume of the component. Tables 1-4 show some representative values 
as reported by Durschlag (1986). This calculation is for 25°C and can be 
adjusted for a temperature range of 4-45°C using the equation:

where v̄T	is	the	partial	specific	volume	at	temperature	T (in Kelvin) and
v̄25	is	the	partial	specific	volume	calculated	from	equation	15	at	25°C	
(Laue, 1992).

    vT = v25 + [4.25 ×10−4 (T − 298.15)]Equation 16
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1 Reprinted from Laue et al. (1992) with permission of Royal Society of
Chemistry; based on values from Cohn and Edsall as presented in
Durschlag (1986).

2 Used for calculation of φ in 6 M guanidine-HCl.
3 Used for calculation of φ in 8 M urea.
4 Values for Asx and Glx are averages of acid and amide forms. Values for

Unk are  average of all amino acids.
5 Based on value from Zmyatnin as presented in Durschlag (1986).

 AMINO 
ACID Mr

v̄
(mL/g)

 HYDRATION

mol-H2O mol-aa mol-H2O mol-aa

(pH 6-8)2 (pH 4)3

Ala 71.1 0.74 1.5 1.5

Arg 156.2 0.70 3 3

Asn 114.1 0.62 2 2

Asp 115.1 0.60 6 2

Asx4 114.6 0.61 4 2

Cys 103.2 0.635 1 1

2Cys 204.3 0.63 - -

Gln 128.1 0.67 2 2

Glu    129.1 0.66 7.5 2

Glx4 128.6 0.665 4.8 2

Gly 57.1    0.64 1 1

His 137.2 0.67 4 4

Ile   113.2  0.90 1 1

Leu 113.2 0.90 1 1

Lys  128.2   0.82 4.5 4.5

Met 131.2 0.75 1 1

Phe 147.2    0.77 0 0

Pro 97.1 0.76 3 3

Ser 87.1 0.63 2 2

Thr 101.1 0.70 2 2

Trp 186.2    0.74 2 2

Tyr 163.2 0.71 3 3

Unk4 119.0 0.72 2.4 2

Val 99.1 0.86 1 1

Table 1. Amino Acids1 at 25°C
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1 Excerpted from Laue et al. (1992); values of  v̄  excerpted from 
Durschlag (1986).

CARBOHYDRATE Mr
v̄

(mL/g)

Fructose 180 0.614

Fucose 164 0.671

Galactose 180 0.622

AGlucose (calculated) 180 0.622

         (0.5 M) 180 0.623

      (3 M) 180 0.638

Hexose 180 0.613

Hexosamine 179 0.666

Sucrose (0.05 M) 342 0.613

                 (0.1-0.2 M) 342 0.616

        (1 M) 342 0.620

Lactose (0.1 M) 342 0.606

               (0.4 M) 342 0.610

Mannose 180 0.607

Methyl-pentose 165 0.678

N-Acetyl-galactosamine 221 0.684

N-Acetyl-glucosamine 221 0.684

N-Acetyl-hexosamine 221 0.666

N-Acetyl-neuraminic acid 308 0.584

Sialic acid 308 0.584

Table 2. Carbohydrates at 20°C1
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1 Excerpted from Laue et al. (1992); values of v̄ excerpted from  
Durschlag (1986).

2 cmc = critical micelle concentration.
3 Determined at 25°C.

1 Excerpted from Laue et al. (1992); values of v̄ excerpted from  
Durschlag (1986).

Table 4. Miscellaneous at  20°C1

DENATURANT Mr
v̄

(mL/g)

Guanidine HCl (lim c  >0) 96 0.70

(1 M) 96 0.732

(2 M) 96 0.747

(6 M) 96 0.763

Urea (lim c  >0) 60 0.735

(1 M) 60 0.745

(8 M) 60 0.763

DOC sodium deoxycholate

                                 (below and above cmc2) 0.779

SDS sodium dodecyl sulfate

             (below cmc) 60 0.814

               (above cmc)3 60 ~0.86

                           (above cmc in H2O)3 60 0.854

                                  (above cmc 0.1 M NaCl)3 60 0.863

Triton X-100 (above cmc) 0.913

Tween-80 (above cmc)2 0.896

SUBSTANCE v̄
(mL/g)

Acetyl-CoA 0.638

ATP 0.44

CTP 0.44

Ethanol 1.18

Glycerol (10%) 0.767

              (20%) 0.768

              (30%) 0.770

              (40%) 0.772

Table 3. Denaturants at 20°C1
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	 The	effects	of	pH	on	partial	specific	volume	are	usually	minor	
and are generally ignored in most calculations. However, in instances 
where changes in structure such as unfolding may occur, large errors 
in v̄ may be observed. These structural changes can be monitored by 
methods such as circular dichroism to ensure the correct calculation for v̄.

 Experiments are often run in the presence of denaturants such 
as	urea	or	guanidine-HCl.	These	compounds	affect	partial	specific	volume	
through preferential binding of the denaturant to the protein. 
Calculations, in this case, must take into account the binding of denaturant 
as well as the effect it has on the hydration of the molecule (Durschlag, 
1986; Lee and Timasheff, 1974, 1979; Prakash and Timasheff, 1981). In 
these cases, v̄ must be replaced by φ, the apparent isopotential partial 
specific	volume.	Generally,	increasing	ionic	strength	results	in	a	linear	
increase in φ. The hydration effects of urea and guanidine-HCl result in a 
nonlinear relationship, however. In these cases, φ replaces v̄ and can be 
determined by:

where v̄ is from equation 15, ρ is the solvent density, v̄3 is the partial 
specific	volume	of	the	denaturant,	A3 is the number of grams of 
denaturant bound to the protein, g3 is the number of grams of  
denaturant per gram of water and A1 is the hydration in grams  
of water per gram of protein. (Note: this equation, as printed in  
Laue et al., 1992, contains an error.) 

  
φ = v -(1

ρ − v3)(A3 − g3A1)Equation 17
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Table 5 shows the values for 6 M guanidine-HCl and 8 M urea at 20°C
(Lee and Timasheff, 1974, 1979; Prakash and Timasheff, 1981).

Table 5. φ for Proteins in 6 M Guanidine-HCl1 and 8 M Urea2

1 Values excerpted from Lee and Timasheff (1974).
2 Values excerpted from Prakash et al. (1981).

 A3 is calculated for both urea and guanidine-HCl assuming  
one molecule of denaturant bound to every pair of peptide bonds  
plus one for every aromatic side chain (including histidine) using the 
following equations:

where Nt is the total number of amino acids, and Naromatic is the number  
of aromatic amino acids. For 6 M guanidine-HCl at 20°C, ρ = 1.1418 g/
mL, v̄3 = 0.763 mL/g and g3 = 1.007 g guanidine-HCl per g H2O. For  
8 M urea at 20°C, ρ = 1.1152 g/mL, v̄3 = 0.763 mL/g and g3 = 0.752 g 
urea per g H2O.

 The assumptions in these calculations have been tested in the 
determination of v̄ from the amino acid composition of a protein. The 
methods are assumed to hold true for most non-amino-acid constituents 
as well, but have not been tested to as great an extent. If there is any 
question	about	the	validity	of	a	calculation,	one	might	consider	confirming	
v̄with an experimental method since an accurate value is critical for 
further analysis.

A =
moles of denaturant

moles of protein
×

Mw,denaturant

Mw,protein

  

moles of denaturant

moles of protein
=

N t −1

2
+ Naromatic

Equation 18

Equation 19

PROTEIN v̄
(native)

φ
(6 M guanidine-HCl)

φ
(8 M urea)

Lima bean

      trypsin inhibitor 0.732 0.698 0.691

Ribonuclease A 0.696 0.694 0.695

α-Lactalbumin 0.704 0.698 0.699

Lysozyme 0.702 0.694 0.700

β-Lactoglobulin 0.751 0.719 0.719

Chymotrypsinogen A 0.733 0.712 0.720

α-Chymotrypsin 0.738 0.713 0.714
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APPENDIX C: 
SOLVENT DENSITY
 Density (ρ) is simply the mass (in g) of one mL of solvent 
and is dependent on temperature and composition. As with v̄, ρ can 
be a source of error in molecular weight calculations, so that a value 
accurate to 4-5 decimal places is usually desirable. Solvent density can 
be measured with a pycnometer, but extensive published data permit 
accurate calculations that account for both temperature and buffer 
composition (Johnson and Frazier, 1985; Wolf et al., 1986).

 The solvent density can be corrected to the experimental 
temperature using the equation of Kell for pure water (ρT)	as	modified	by	
Laue et al. (1992) to yield cgs units:

where T is the temperature in °C and the factor, 
1.000028 × 10-3 , converts the units from kg/m3 to g/mL. Densities 
calculated	in	this	manner	are	good	to	at	least	five	decimal	places	from	
0-100°C. Temperature corrections for isotopes of water are different 
(Laue, 1992; Steckel and Szapiro, 1963) and will not be discussed here.

 The density of a buffer or any other solution can be estimated 
by summing the density increments calculated for each component 
(Svedberg and Pedersen, 1940). Density increments for each 
component can be calculated using the polynomial function:

where Δρ is the density increment at molar concentration ci. The 
coefficients	Ai to Fi	are	fitted	parameters	using	tabulated	values	of	ρ 
as a function of ci, and are determined using least-squares procedures 
(Johnson and Frazier, 1985). Values of A-F excerpted from Laue (1992) 
for some common buffer components are shown in Table 6.
 

    

ρT = 1.000028 ×10-3[999.83952 +16.945176T
1 + (16.879850 ×10-3 T ) ]

−1.000028 ×10-3[(7.9870401 ×10-3T 2 ) + (46.170461 ×10-6 T3 )
1 + (16.879850 ×10-3T) ]

+1.000028 ×10-3[(105.56302 ×10-9 T 4 ) − (280.54253 ×10-12 T 5 )
1 + (16.879850 ×10-3T ) ]

Equation 20

∆ρci
 = (Ai + Bici

1 ⁄2 + Cici + Dici
2 + Eici

3 +Fici
4) - 0.998234Equation 21
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	 The	values	for	A-F	fit	well	to	density	data	for	simple	salts.	For	
organic salts and alcohols, however, some systematic deviations are 
apparent	in	the	fit	to	determine	A-F,	and	even	though	errors	may	be	
small, the polynomial model may not be adequate for this calculation.

 Using density increments, the solution density at  
temperature T is:

where ρT,b is the calculated density, ρT/0.998234 is the temperature 
correction factor, and ΣΔρCi is the sum of density increments for  
buffer components. 

 All density correction calculations neglect the contribution of 
macromolecular solutes. Both high concentration and redistribution of the
macrosolute can affect these values. Also, redistribution of the solvent,
while usually negligible, should be examined. As with  v̄ calculations, ρ
calculations are, for the most part, accurate. If, however, any doubt exists,
one should use experimental methods for density measurement.

ρT,b =
(0.998234 + ∆ρci∑ )ρT

0.998234

Equation 22
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